Publications by authors named "Peery M"

Fire shapes biodiversity in many forested ecosystems, but historical management practices and anthropogenic climate change have led to larger, more severe fires that threaten many animal species where such disturbances do not occur naturally. As predators, owls can play important ecological roles in biological communities, but how changing fire regimes affect individual species and species assemblages is largely unknown. Here, we examined the impact of fire severity, history, and configuration over the past 35 years on an assemblage of six forest owl species in the Sierra Nevada, California, using ecosystem-scale passive acoustic monitoring.

View Article and Find Full Text PDF
Article Synopsis
  • - The objective of the review was to examine the pharmacology, safety, and effectiveness of BCMA-directed immunotherapies, such as CAR-T therapy and bispecific antibodies, for treating relapsed/refractory multiple myeloma (RRMM).
  • - Evidence from phase III and II clinical trials shows that BCMA-directed therapies like idecabtagene vicleucel and teclistamab significantly improve response rates and progression-free survival compared to standard treatments for RRMM.
  • - Despite their benefits, these therapies pose safety risks (like cytokine release syndrome) and face challenges in patient access due to the need for specialized administration and monitoring facilities.
View Article and Find Full Text PDF

It is widely recognized that predators can influence prey through both direct consumption and by inducing costly antipredator behaviours, the latter of which can produce nonconsumptive effects that cascade through trophic systems. Yet, determining how particular prey manage risk in natural settings remains challenging as empirical studies disproportionately focus on single predator-prey dyads. Here, we contrast foraging strategies within the context of a primary and secondary prey to explore how antipredator behaviours emerge as a product of predation intensity as well as the setting in which an encounter takes place.

View Article and Find Full Text PDF

More frequent and extreme heat waves threaten climate-sensitive species. Structurally complex, older forests can buffer these effects by creating cool microclimates, although the mechanisms by which forest refugia mitigate physiological responses to heat exposure and subsequent population-level consequences remain relatively unexplored. We leveraged fine-scale movement data, doubly labeled water, and two decades of demographic data for the California spotted owl (Strix occidentalis occidentalis) to (1) assess the role of older forest characteristics as potential energetic buffers for individuals and (2) examine the subsequent value of older forests as refugia for a core population in the Sierra Nevada and a periphery population in the San Bernardino Mountains.

View Article and Find Full Text PDF

Predator populations are imperiled globally, due in part to changing habitat and trophic interactions. Theoretical and laboratory studies suggest that heterogeneous landscapes containing prey refuges acting as source habitats can benefit both predator and prey populations, although the importance of heterogeneity in natural systems is uncertain. Here, we tested the hypothesis that landscape heterogeneity mediates predator-prey interactions between the California spotted owl (Strix occidentalis occidentalis)-a mature forest species-and one of its principal prey, the dusky-footed woodrat (Neotoma fuscipes)-a younger forest species-to the benefit of both.

View Article and Find Full Text PDF

The extent to which persisting species may fill the functional role of extirpated or declining species has profound implications for the structure of biological communities and ecosystem functioning. In North America, arthropodivorous bats are threatened on a continent-wide scale by the spread of white-nose syndrome (WNS), a disease caused by the fungus . We tested whether bat species that display lower mortality from this disease can partially fill the functional role of other bat species experiencing population declines.

View Article and Find Full Text PDF

Diffuse large B-cell lymphoma (DLBCL) is the most common form of aggressive non-Hodgkin lymphoma. Approximately 40% of patients with DLBCL will experience disease relapse or will be refractory to first line chemoimmunotherapy, necessitating second-line salvage therapy. This has historically consisted of platinum-based chemotherapy regimens followed by autologous hematopoietic stem cell transplantation with curative intent for transplant-eligible patients or palliative chemotherapy for transplant-ineligible patients.

View Article and Find Full Text PDF

Background: Rapid anthropogenic climate change will require species to adapt to shifting environmental conditions, with successful adaptation dependent upon current patterns of genetic variation. While landscape genomic approaches allow for exploration of local adaptation in non-model systems, most landscape genomics studies of adaptive capacity are limited to exploratory identification of potentially important functional genes, often without a priori expectations as to the gene functions that may be most important for climate change responses. In this study, we integrated targeted sequencing of genes of known function and genotyping of single-nucleotide polymorphisms to examine spatial, environmental, and species-specific patterns of potential local adaptation in two co-occuring turtle species: the Blanding's turtle (Emydoidea blandingii) and the snapping turtle (Chelydra serpentina).

View Article and Find Full Text PDF

Although most predators are generalists, the majority of studies on the association between prey availability and prey consumption have focused on specialist predators. To investigate the role of highly generalist predators in a complex food web, we measured the relationships between prey consumption and prey availability in two common arthropodivorous bats. Specifically, we used high-throughput amplicon sequencing coupled with a known mock community to characterize seasonal changes in little brown and big brown bat diets.

View Article and Find Full Text PDF

Recent bioacoustic advances have facilitated large-scale population monitoring for acoustically active species. Animal sounds, however, can of information that is underutilized in typical approaches to passive acoustic monitoring (PAM) that treat sounds simply as detections. We developed 3 methods of extracting additional ecological detail from acoustic data that are applicable to a broad range of acoustically active species.

View Article and Find Full Text PDF

Resource specialists persist in a narrow range of resources. Consequently, the abundance of key resources should drive vital rates, individual fitness, and population viability. While Neotropical forests feature both high levels of biodiversity and numbers of specialist species, no studies have directly evaluated how the variation of key resources affects the fitness of a tropical specialist.

View Article and Find Full Text PDF

DNA analysis of predator faeces using high-throughput amplicon sequencing (HTS) enhances our understanding of predator-prey interactions. However, conclusions drawn from this technique are constrained by biases that occur in multiple steps of the HTS workflow. To better characterize insectivorous animal diets, we used DNA from a diverse set of arthropods to assess PCR biases of commonly used and novel primer pairs for the mitochondrial gene, cytochrome oxidase C subunit 1 (COI).

View Article and Find Full Text PDF

In wide-ranging taxa with historically dynamic ranges, past allopatric isolation and range expansion can both influence the current structure of genetic diversity. Considering alternate historical scenarios involving expansion from either a single refugium or from multiple refugia can be useful in differentiating the effects of isolation and expansion. Here, we examined patterns of genetic variability in the trans-continentally distributed painted turtle (Chrysemys picta).

View Article and Find Full Text PDF

General mechanisms underlying the distribution and fitness of synanthropic predators in human-influenced landscapes remain unclear. Under the consumer resource-matching hypothesis, synanthropes are expected to distribute themselves among habitats according to resource availability, such that densities are greater in human-subsidized habitats, but mean individual fitness is equal among habitats because of negative density dependence. However, "under-matching" to human food resources can occur, because dominant individuals exclude subordinates from subsidized habitats and realize relatively high fitness.

View Article and Find Full Text PDF

Specialized species, like arboreal folivores, often develop beneficial relationships with symbionts to exploit ecologically constrained lifestyles. Although coevolution can drive speciation by specialization of a symbiont to a host, a symbiotic relationship is not indicative of coevolution between host and symbiont. We tested for coevolved relationships between highly specialized two- and three-toed sloths (Choloepus spp.

View Article and Find Full Text PDF

West Nile virus (WNV) was first detected in New York in 1999 and, during its expansion across the continental US, southern Canada, and Mexico, members of the Corvidae (ravens, crows, magpies, and jays) were frequently infected and highly susceptible to the virus. As part of a behavioral study of Steller's Jays ( Cyanocitta stelleri ) conducted from 2011-14 in the coastal California counties of San Mateo and Santa Cruz, 380 Steller's Jays were captured and tested for antibodies to WNV. Using the wild bird immunoglobulin G enzyme linked immunoassay, we failed to detect antibodies to WNV, indicating either that there was no previous exposure to the virus or that exposed birds had died.

View Article and Find Full Text PDF

Expanding the scope of landscape genetics beyond the level of single species can help to reveal how species traits influence responses to environmental change. Multispecies studies are particularly valuable in highly threatened taxa, such as turtles, in which the impacts of anthropogenic change are strongly influenced by interspecific differences in life history strategies, habitat preferences and mobility. We sampled approximately 1500 individuals of three co-occurring turtle species across a gradient of habitat change (including varying loss of wetlands and agricultural conversion of upland habitats) in the Midwestern USA.

View Article and Find Full Text PDF

Characterizing how frequently, and at what life stages and spatial scales, dispersal occurs can be difficult, especially for species with cryptic juvenile periods and long reproductive life spans. Using a combination of mark-recapture information, microsatellite genetic data, and demographic simulations, we characterize natal and breeding dispersal patterns in the long-lived, slow-maturing, and endangered Blanding's turtle (Emydoidea blandingii), focusing on nesting females. We captured and genotyped 310 individual Blanding's turtles (including 220 nesting females) in a central Wisconsin population from 2010 to 2013, with additional information on movements among 3 focal nesting areas within this population available from carapace-marking conducted from 2001 to 2009.

View Article and Find Full Text PDF

By exploiting unutilized resources, organisms expand into novel niches, which can lead to adaptive radiation. However, some groups fail to diversify despite the apparent opportunity to do so. Although arising multiple times, arboreal folivores are rare and have not radiated, presumably because of energetic constraints.

View Article and Find Full Text PDF

Restriction-enzyme-based sequencing methods enable the genotyping of thousands of single nucleotide polymorphism (SNP) loci in nonmodel organisms. However, in contrast to traditional genetic markers, genotyping error rates in SNPs derived from restriction-enzyme-based methods remain largely unknown. Here, we estimated genotyping error rates in SNPs genotyped with double digest RAD sequencing from Mendelian incompatibilities in known mother-offspring dyads of Hoffman's two-toed sloth (Choloepus hoffmanni) across a range of coverage and sequence quality criteria, for both reference-aligned and de novo-assembled data sets.

View Article and Find Full Text PDF

Symbiotic microbial communities are critical to the function and survival of animals. This relationship is obligatory for herbivores that engage gut microorganisms for the conversion of dietary plant materials into nutrients such as short-chain organic acids (SCOAs). The constraint on body size imposed by their arboreal lifestyle is thought to make this symbiosis especially important for sloths.

View Article and Find Full Text PDF

The present studies examined the biology of the multiple sclerosis drug dimethyl-fumarate (DMF) or its in vivo breakdown product and active metabolite mono-methyl-fumarate (MMF), alone or in combination with proteasome inhibitors, in primary human glioblastoma (GBM) cells. MMF enhanced velcade and carfilzomib toxicity in multiple primary GBM isolates. Similar data were obtained in breast and colon cancer cells.

View Article and Find Full Text PDF

Arboreal herbivory is rare among mammals. The few species with this lifestyle possess unique adaptions to overcome size-related constraints on nutritional energetics. Sloths are folivores that spend most of their time resting or eating in the forest canopy.

View Article and Find Full Text PDF