Publications by authors named "Peer Y"

Genome merging is a common phenomenon causing a wide range of consequences on phenotype, adaptation, and gene expression, yet its broader implications are not well-understood. Two consequences of genome merging on gene expression remain particularly poorly understood: dosage effects and evolution of expression. We employed Chlamydomonas reinhardtii as a model to investigate the effects of asymmetric genome merging by crossing a diploid with a haploid strain to create a novel triploid line.

View Article and Find Full Text PDF

Following whole-genome duplication (WGD), duplicate gene pairs (homoeologs) can evolve varying degrees of expression divergence. However, the determinants influencing these relative expression level differences (RFPKM) between homoeologs remain elusive. In this study, we analyzed the RFPKM between homoeologs in 3 angiosperms, Nymphaea colorata, Nelumbo nucifera, and Acorus tatarinowii, all having undergone a single WGD since the origin of angiosperms.

View Article and Find Full Text PDF
Article Synopsis
  • Whole-genome duplication (WGD) helps create new traits in plants, but it's hard for these polyploids to survive long-term because they generally need more energy and space than their diploid ancestors.
  • Researchers created a model to see if larger plants (polyploids) could compete with their smaller ancestors (diploids) based on how they use energy from photosynthesis.
  • The results showed that polyploids can succeed even if they aren't as efficient at using energy, especially when they form repeatedly and compete for nutrients. Small changes in how plants manage their energy can help polyploids thrive.
View Article and Find Full Text PDF

Premise: In plants, whole-genome duplication (WGD) is a common mutation with profound evolutionary potential. Given the costs associated with a superfluous genome copy, polyploid establishment is enigmatic. However, in the right environment, immediate phenotypic changes following WGD can facilitate establishment.

View Article and Find Full Text PDF

Hybridization, the process of crossing individuals from diverse genetic backgrounds, plays a pivotal role in evolution, biological invasiveness, and crop breeding. At the transcriptional level, hybridization often leads to complex nonadditive effects, presenting challenges for understanding its consequences. Although standard transcriptomic analyses exist to compare hybrids to their progenitors, such analyses have not been implemented in a software package, hindering reproducibility.

View Article and Find Full Text PDF

Hybridization blurs species boundaries and leads to intertwined lineages resulting in reticulate evolution. Polyploidy, the outcome of whole genome duplication (WGD), has more recently been implicated in promoting and facilitating hybridization between polyploid species, potentially leading to adaptive introgression. However, because polyploid lineages are usually ephemeral states in the evolutionary history of life it is unclear whether WGD-potentiated hybridization has any appreciable effect on their diploid counterparts.

View Article and Find Full Text PDF

Motivation: Major improvements in sequencing technologies and genome sequence assembly have led to a huge increase in the number of available genome sequences. In turn, these genome sequences form an invaluable source for evolutionary, ecological, and comparative studies. One kind of analysis that has become routine is the search for traces of ancient polyploidy, particularly for plant genomes, where whole-genome duplication (WGD) is rampant.

View Article and Find Full Text PDF

Coffea arabica, an allotetraploid hybrid of Coffea eugenioides and Coffea canephora, is the source of approximately 60% of coffee products worldwide, and its cultivated accessions have undergone several population bottlenecks. We present chromosome-level assemblies of a di-haploid C. arabica accession and modern representatives of its diploid progenitors, C.

View Article and Find Full Text PDF

Lasiodiplodia hormozganensis, initially recognized as a fungal plant pathogen, is recognized now acknowledged as a potential threat to humans. However, our understanding of the pathogenesis mechanisms of Lasiodiplodia species remains limited, and the impact of temperature on its pathogenicity is unclear. This study aims to elucidate the effects of temperature on the biology of L.

View Article and Find Full Text PDF

Increasing studies suggest that the biased retention of stress-related transcription factors (TFs) after whole-genome duplications (WGDs) could rewire gene transcriptional networks, facilitating plant adaptation to challenging environments. However, the role of posttranscriptional factors (e.g.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on Populus, a key model for tree genomics, and addresses challenges in identifying chromosomes in hybrid poplar strains, particularly the "84K" hybrid.
  • Researchers utilized advanced sequencing techniques and developed high-quality genome assemblies of both parental species, thoroughly mapping their chromosomes and analyzing gene expression patterns at the allele level.
  • Machine learning models showed promise in predicting allele-specific expression, identifying critical genomic features influencing expression differences, and paving the way for future functional studies in Populus hybrids.
View Article and Find Full Text PDF

Hormones control developmental and physiological processes, often by regulating the expression of multiple genes simultaneously or sequentially. Crosstalk between hormones and epigenetics is pivotal to dynamically coordinate this process. Hormonal signals can guide the addition and removal of epigenetic marks, steering gene expression.

View Article and Find Full Text PDF

We present chromosome-level genome assemblies from representative species of three independently evolved seagrass lineages: Posidonia oceanica, Cymodocea nodosa, Thalassia testudinum and Zostera marina. We also include a draft genome of Potamogeton acutifolius, belonging to a freshwater sister lineage to Zosteraceae. All seagrass species share an ancient whole-genome triplication, while additional whole-genome duplications were uncovered for C.

View Article and Find Full Text PDF

Most fresh bananas belong to the Cavendish and Gros Michel subgroups. Here, we report chromosome-scale genome assemblies of Cavendish (1.48 Gb) and Gros Michel (1.

View Article and Find Full Text PDF

Background: Sterile-fertile heteroblasty is a common phenomenon observed in ferns, where the leaf shape of a fern sporophyll, responsible for sporangium production, differs from that of a regular trophophyll. However, due to the large size and complexity of most fern genomes, the molecular mechanisms that regulate the formation of these functionally different heteroblasty have remained elusive. To shed light on these mechanisms, we generated a full-length transcriptome of Ceratopteris chingii with PacBio Iso-Seq from five tissue samples.

View Article and Find Full Text PDF

The importance of whole-genome duplication (WGD) for evolution is controversial. Whereas some view WGD mainly as detrimental and an evolutionary dead end, there is growing evidence that polyploidization can help overcome environmental change, stressful conditions, or periods of extinction. However, despite much research, the mechanistic underpinnings of why and how polyploids might be able to outcompete or outlive nonpolyploids at times of environmental upheaval remain elusive, especially for autopolyploids, in which heterosis effects are limited.

View Article and Find Full Text PDF

MicroTom has a short growth cycle and high transformation efficiency, and is a prospective model plant for studying organ development, metabolism, and plant-microbe interactions. Here, with a newly assembled reference genome for this tomato cultivar and abundant RNA-seq data derived from tissues of different organs/developmental stages/treatments, we constructed multiple gene co-expression networks, which will provide valuable clues for the identification of important genes involved in diverse regulatory pathways during plant growth, e.g.

View Article and Find Full Text PDF
Article Synopsis
  • Currents significantly influence the distribution of marine species, including eelgrass (Zostera marina), which we traced back to its origins in the Northwest Pacific using genetic data.
  • We found two distinct Pacific clades and identified two main colonization events into the Atlantic through the Canadian Arctic, with evidence that the eelgrass ecosystems have existed there for about 243,000 years.
  • The Atlantic populations emerged much more recently, around 19,000 years ago, and show lower genetic diversity compared to Pacific populations, raising concerns about their adaptability to climate change.
View Article and Find Full Text PDF

Angiosperms have a complex history of whole-genome duplications (WGDs), with varying numbers and ages of WGD events across clades. These WGDs have greatly affected the composition of plant genomes due to the biased retention of genes belonging to certain functional categories following their duplication. In particular, regulatory genes and genes encoding proteins that act in multiprotein complexes have been retained in excess following WGD.

View Article and Find Full Text PDF

Monocots are a major taxon within flowering plants, have unique morphological traits, and show an extraordinary diversity in lifestyle. To improve our understanding of monocot origin and evolution, we generate chromosome-level reference genomes of the diploid Acorus gramineus and the tetraploid Ac. calamus, the only two accepted species from the family Acoraceae, which form a sister lineage to all other monocots.

View Article and Find Full Text PDF
Article Synopsis
  • * The study focuses on two species of plants: a karst endemic species and its widely distributed relative in East Asia, using advanced genome sequencing to explore their evolutionary relationship.
  • * Findings highlight significant genetic differences between the two species, including adaptations to high calcium stress, revealing both convergent evolution traits and the early stages of speciation within their genus.
View Article and Find Full Text PDF

The generation of genetic diversity via mutagenesis is routinely used for protein engineering and pathway optimization. Current technologies for random mutagenesis often target either the whole genome or relatively narrow windows. To bridge this gap, we developed CoMuTER (Confined Mutagenesis using a Type I-E CRISPR-Cas system), a tool that allows inducible and targetable, in vivo mutagenesis of genomic loci of up to 55 kilobases.

View Article and Find Full Text PDF

We delineate the evolutionary plasticity of the ecologically and biotechnologically important genus , by analysing the genomes of 213 species. Streptomycetes genomes demonstrate high levels of internal homology, whereas the genome of their last common ancestor was already complex. Importantly, we identify the species-specific fingerprint proteins that characterize each species.

View Article and Find Full Text PDF
Article Synopsis
  • This text discusses how different species can evolve similar traits (convergent evolution) when faced with similar environmental challenges, while closely related species can diverge when adapting to extreme habitats.
  • The research focuses on two species of the Platycarya genus—Platycarya longipes and Platycarya strobilacea—by analyzing their genomes to understand the molecular processes involved in their evolutionary paths.
  • The findings suggest that P. longipes has undergone significant genetic differentiation influenced by long-term selection, particularly in the calcium influx channel gene TPC1, which may highlight a shared adaptation to high calcium environments in karst regions.
View Article and Find Full Text PDF