Publications by authors named "Pedroarena C"

Modifications in the sensitivity of neural elements allow the brain to adapt its functions to varying demands. Frequency-dependent short-term synaptic depression (STD) provides a dynamic gain-control mechanism enabling adaptation to different background conditions alongside enhanced sensitivity to input-driven changes in activity. In contrast, synapses displaying frequency-invariant transmission can faithfully transfer ongoing presynaptic rates enabling linear processing, deemed critical for many functions.

View Article and Find Full Text PDF

Low threshold voltage activated Kv1 potassium channels play key roles in regulating action potential (AP) threshold, neural excitability, and synaptic transmission. Kv1 channels are highly expressed in the cerebellum and mutations of human Kv1 genes are associated to episodic forms of ataxia (EAT-1). Besides the well-established role of Kv1 channels in controlling the cerebellar basket-Purkinje cells synapses, Kv1 channels are expressed by the deep cerebellar nuclear neurons (DCNs) where they regulate the activity of principal DCNs carrying the cerebellar output.

View Article and Find Full Text PDF

New neurons generated in the adult dentate gyrus are constantly integrated into the hippocampal circuitry and activated during encoding and recall of new memories. Despite identification of extracellular signals that regulate survival and integration of adult-born neurons such as neurotrophins and neurotransmitters, the nature of the intracellular modulators required to transduce those signals remains elusive. Here, we provide evidence of the expression and transcriptional activity of nuclear factor of activated T cell c4 (NFATc4) in hippocampal progenitor cells.

View Article and Find Full Text PDF

Following hyperpolarizing inputs, many neurons respond with an increase in firing rate, a phenomenon known as rebound excitation. Rebound excitation has been proposed as a mechanism to encode and process inhibitory signals and transfer them to target structures. Activation of low-voltage-activated T-type calcium channels and the ensuing low-threshold calcium spikes is one of the mechanisms proposed to support rebound excitation.

View Article and Find Full Text PDF

Deep cerebellar nuclear neurons (DCNs) display characteristic electrical properties, including spontaneous spiking and the ability to discharge narrow spikes at high frequency. These properties are thought to be relevant to processing inhibitory Purkinje cell input and transferring well-timed signals to cerebellar targets. Yet, the underlying ionic mechanisms are not completely understood.

View Article and Find Full Text PDF

Synaptic gain control and information storage in neural networks are mediated by alterations in synaptic transmission, such as in long-term potentiation (LTP). Here, we show using both in vitro and in vivo recordings from the rat cerebellum that tetanization protocols for the induction of LTP at parallel fiber (PF)-to-Purkinje cell synapses can also evoke increases in intrinsic excitability. This form of intrinsic plasticity shares with LTP a requirement for the activation of protein phosphatases 1, 2A, and 2B for induction.

View Article and Find Full Text PDF

Cerebellar cortical signals are carried to their principal target, the deep cerebellar nuclear neurons (DCNs), via the inhibitory pathway formed by Purkinje cell (PC) axons. Two different intrinsic properties of DCNs, rebound excitation and automatic firing, have been proposed to support ensuing mechanisms for information transfer via inhibitory synapses. The efficacy of these mechanisms was investigated using whole-cell recordings of spontaneously firing DCNs in cerebellar slices.

View Article and Find Full Text PDF

Despite evidence of local glycinergic circuits in the mature cerebellar nuclei the result of their activation remains unknown. Here, using whole cell recordings in rat cerebellar slices we demonstrated that after postnatal day 17 (>P17) glycinergic IPSCs can be readily evoked in large deep cerebellar nuclear neurons (DCNs), in the same way as in neonatal DCNs (P7-P10). Spontaneous glycinergic IPSCs were very rare but direct presynaptic depolarization by superfusion with elevated potassium concentration or application of 4-aminopyridine consistently evoked strychnine sensitive IPSCs.

View Article and Find Full Text PDF

Malfunctions of potassium channels are increasingly implicated as causes of neurological disorders. However, the functional roles of the large-conductance voltage- and Ca(2+)-activated K(+) channel (BK channel), a unique calcium, and voltage-activated potassium channel type have remained elusive. Here we report that mice lacking BK channels (BK(-/-)) show cerebellar dysfunction in the form of abnormal conditioned eye-blink reflex, abnormal locomotion and pronounced deficiency in motor coordination, which are likely consequences of cerebellar learning deficiency.

View Article and Find Full Text PDF

In heterozygous Lurcher mice (Lc/+), the Purkinje cells (PCs) degenerate almost totally during postnatal development. On the other hand, their projection target, the deep cerebellar nuclei (DCN), shows few signs of degeneration and seems to play an important role in maintaining a residual cerebellar function in Lc/+. We asked whether the DCN in Lc/+ develop cellular adaptations allowing them to cope with the loss of GABAergic PC input.

View Article and Find Full Text PDF

Although the entire output of the cerebellar cortex is conveyed to the deep cerebellar nuclei neurons (DCNs) via the GABAergic synapses established by Purkinje cells (PCs), very little is known about the strength and dynamic properties of PC-DCN connections. Here we show that activation of PC-DCN unitary connections induced large conductance changes (11.7 nS) in DCNs recorded in whole cell patch configuration in acute slices, suggesting that activity of single PCs might significantly affect the output of its target neurons.

View Article and Find Full Text PDF

We have proposed that neurotrophins, in addition to their trophic actions, act as neuromodulators in the adult central nervous system. As a first step to test this hypothesis, we examined in the adult rat slice preparation whether nerve growth factor and neurotrophin-3 are capable of altering the excitability of neurons of the mesencencephalic trigeminal nucleus. In contrast to vehicle pressure microapplication, which did not evoke changes in the electrophysiological properties of these neurons, neurotrophin application produced a significant increase in amplitude of the membrane potential oscillatory activity that is observed in these cells and a significant decrease in their threshold current.

View Article and Find Full Text PDF

In the present report, we provide evidence that mesencephalic trigeminal (Mes-V) sensory neurons, a peculiar type of primary afferent cell with its cell body located within the CNS, may operate in different functional modes depending on the degree of their membrane polarization. Using intracellular recording techniques in the slice preparation of the adult rat brain stem, we demonstrate that when these neurons are depolarized, they exhibit sustained, high-frequency, amplitude-modulated membrane potential oscillations. Under these conditions, the cells discharge high-frequency trains of spikes.

View Article and Find Full Text PDF
The neuronal basis for consciousness.

Philos Trans R Soc Lond B Biol Sci

November 1998

Attempting to understand how the brain, as a whole, might be organized seems, for the first time, to be a serious topic of inquiry. One aspect of its neuronal organization that seems particularly central to global function is the rich thalamocortical interconnectivity, and most particularly the reciprocal nature of the thalamocortical neuronal loop function. Moreover, the interaction between the specific and non-specific thalamic loops suggests that rather than a gate into the brain, the thalamus represents a hub from which any site in the cortex can communicate with any other such site or sites.

View Article and Find Full Text PDF

Cortical-projecting thalamic neurons, in guinea pig brain slices, display high-frequency membrane potential oscillations (20-80 Hz), when their somata are depolarized beyond -45 mV. These oscillations, preferentially located at dendritic sites, are supported by the activation of P/Q type calcium channels, as opposed to the expected persistent sodium conductance responsible for such rhythmic behavior in other central neurons. Short hyperpolarizing pulses reset the phase and transiently increase the amplitude of these oscillations.

View Article and Find Full Text PDF

Trigeminal motoneurons of the guinea pig brain stem slice preparation were studied using intracellular recording techniques. The voltage response to a 100-ms constant-current pulse was studied and a population of cells was found which did not exhibit sag or overshoot of their voltage response to a pulse of hyperpolarizing current of < 1 nA but did exhibit both phenomena when a current pulse of > 1 nA was used. The sag and overshoot observed with large-current pulses were reduced or blocked when 4 mM CsCl was added to the bathing solution.

View Article and Find Full Text PDF

Brainstem and spinal cord motoneurons that innervate somatic musculature serving antigravity functions are postsynaptically inhibited during active sleep. However, it has been reported that hypoglossal motoneurons (which do not innervate antigravity muscles) are not postsynaptically inhibited during active sleep, but are disfacilitated. In the present report we describe changes, during active sleep, in the excitability and membrane potential of digastric and synergistic motoneurons of the trigeminal motor pool; these neurons do not perform antigravity functions.

View Article and Find Full Text PDF

Stimulation of a region within the parvocellular medullary reticular formation (PcRF) that contains somas of premotor interneurons produces short latency inhibitory synaptic potentials (IPSPs) in cat trigeminal motoneurons. The present study was undertaken to determine whether glycinergic synapses are responsible for these IPSPs. The intravenous administration of strychnine, an established glycine antagonist, abolished these PcRF-IPSPs.

View Article and Find Full Text PDF

The present report describes the effects on trigeminal motoneurons of stimulation of a circumscribed site within the parvocellular region of the medullary reticular formation. This medullary site was selected because anatomical studies have shown that premotor interneurons project from this site to the trigeminal motorpool. Electrical stimulation of this site induced IPSPs (PcRF-IPSPs) in jaw-closer motoneurons.

View Article and Find Full Text PDF

This study was undertaken to explore the effects, on digastric motoneurons, of electrical stimulation of a site within the parvocellular medullary reticular formation (PcRF). This site is located lateral to the hypoglossal nucleus and ventral to the dorsal motor nucleus of the vagus nerve. Within this site are somas of premotor interneurons that project to trigeminal motor nuclei.

View Article and Find Full Text PDF