Publications by authors named "Pedro de-la-Villa"

In the mammalian central nervous system, axonal myelination, executed by mature oligodendrocytes (MOLs), enables rapid neural transmission. Conversely, myelin deficiencies are hallmark features of multiple sclerosis, optic neuromyelitis, and some leukodystrophies. Recent studies have highlighted that MOLs are heterogeneous; however, how MOL subpopulations are specified and balanced in physiological settings is poorly understood.

View Article and Find Full Text PDF

Background: Rooms illuminated by "black light" (<400 nm wavelength) has become popular, but there is not enough scientific evidence to support its implementation. This study aims to assess the effects of violet light (392 nm) on the circadian rest-activity rhythm and the visual system through animal experimentation.

Materials And Results: Five groups of four mice were exposed to different white light, violet light, and dark periods, and their circadian rhythm was analyzed by measuring the circadian period using rest-activity cycles.

View Article and Find Full Text PDF

Excitotoxicity has been linked to the pathogenesis of several serious degenerative ocular diseases. Long-term overactivation of the NMDA receptor by glutamate in retinal ganglion cells (RGCs) results in degeneration, apoptosis and loss of function leading to blindness. NMDA receptor antagonists have been proposed as a pharmacological blockage of glutamate excitotoxicity.

View Article and Find Full Text PDF

Aims: Compensatory mechanisms in heart failure (HF) are triggered to maintain adequate cardiac output. Among them, hyperactivation of the sympathetic nervous system (SNS) is one of the main ones and carries a worse prognosis. The pupillary reflex depends on the SNS, and we can evaluate it through pupillometry.

View Article and Find Full Text PDF

Huntington's disease (HD) is caused by an aberrant expansion of CAG repeats in the HTT gene that mainly affects basal ganglia. Although striatal dysfunction has been widely studied in HD mouse models, other brain areas can also be relevant to the pathology. In this sense, we have special interest on the retina as this is the most exposed part of the central nervous system that enable health monitoring of patients using noninvasive techniques.

View Article and Find Full Text PDF

In the last decades, mesenchymal stem cells (MSCs) have become the cornerstone of cellular therapy due to their unique characteristics. Specifically human placenta-derived mesenchymal stem cells (hPMSCs) are highlighted for their unique features, including ease to isolate, non-invasive techniques for large scale cell production, significant immunomodulatory capacity, and a high ability to migrate to injuries. Researchers are exploring innovative techniques to overcome the low regenerative capacity of Central Nervous System (CNS) neurons, with one promising avenue being the development of tailored mesenchymal stem cell therapies capable of promoting neural repair and recovery.

View Article and Find Full Text PDF

Using constitutive GRF1/2 knockout mice, we showed previously that GRF2 is a key regulator of nuclear migration in retinal cone photoreceptors. To evaluate the functional relevance of that cellular process for two putative targets of the GEF activity of GRF2 (RAC1 and CDC42), here we compared the structural and functional retinal phenotypes resulting from conditional targeting of RAC1 or CDC42 in the cone photoreceptors of constitutive GRF2 and GRF2 mice. We observed that single RAC1 disruption did not cause any obvious morphological or physiological changes in the retinas of GRF2 mice, and did not modify either the phenotypic alterations previously described in the retinal photoreceptor layer of GRF2 mice.

View Article and Find Full Text PDF

Sodium iodate (NaIO) has been shown to cause severe oxidative stress damage to retinal pigment epithelium cells. This results in the indirect death of photoreceptors, leading to a loss of visual capabilities. The aim of this work is the morphological and functional characterization of the retina and the visual pathway of an animal model of retinal neurodegeneration induced by oxidative stress.

View Article and Find Full Text PDF

Purpose: To evaluate the effects of various retinal neurotransmitters on temporal resolution, particularly, on the Critical Flicker Fusion Frequency (CFF), which has been previously applied in ophthalmic pathophysiologic research.

Methods: A binocular physiologic electroretinogram was performed on adult mice. Animals in the control group were injected in the right eye with 1 μL of phosphate-buffered saline (PBS).

View Article and Find Full Text PDF

To determine the origin of oscillatory potentials (OPs), binocular electroretinogram (ERG) recordings were performed under light and dark adaptation on adult healthy C57BL/6J mice. In the experimental group, 1 μL of PBS was injected into the left eye, while the right eye was injected with 1 μL of PBS containing different agents: APB, GABA, Bicuculline, TPMPA, Glutamate, DNQX, Glycine, Strychnine, or HEPES. The OP response depends on the type of photoreceptors involved, showing their maximum response amplitude in the ERG induced by mixed rod/cone stimulation.

View Article and Find Full Text PDF

The short and long isoforms of FAIM (FAIM-S and FAIM-L) hold important functions in the central nervous system, and their expression levels are specifically enriched in the retina. We previously described that knockout (KO) mice present structural and molecular alterations in the retina compatible with a neurodegenerative phenotype. Here, we aimed to study KO retinal functions and molecular mechanisms leading to its alterations.

View Article and Find Full Text PDF

To identify and characterize numerically and topographically the population of alpha retinal ganglion cells (αRGCs) and their subtypes, the sustained-response ON-center αRGCs (ONs-αRGCs), which correspond to the type 4 intrinsically photosensitive RGCs (M4-ipRGCs), the transient-response ON-center αRGCs (ONt-αRGCs), the sustained-response OFF-center αRGCs (OFFs-αRGCs), and the transient-response OFF-center αRGCs (OFFt-αRGCs) in the adult pigmented mouse retina. The αRGC population and its subtypes were studied in flat-mounted retinas and radial sections immunodetected against non-phosphorylated high molecular weight neurofilament subunit (SMI-32) or osteopontin (OPN), two αRGCs pan-markers; Calbindin, expressed in ONs-αRGCs, and amacrines; T-box transcription factor T-brain 2 (Tbr2), a key transcriptional regulator for ipRGC development and maintenance, expressed in ipRGCs and GABA-displaced amacrine cells; OPN4, an anti-melanopsin antibody; or Brn3a and Brn3c, markers of RGCs. The total population of RGCs was counted automatically and αRGCs and its subtypes were counted manually, and color-coded neighborhood maps were used for their topographical representation.

View Article and Find Full Text PDF

Recent technological development requires new approaches to address the problem of blindness. Such approaches need to be able to ensure that no cells with photosensitive capability remain in the retina. The presented model, × (O×Rd) double mutant murine, is a combination of a mutation in the gene (photoreceptor degeneration) together with a deletion of the gene (responsible for the expression of melanopsin in the intrinsically photosensitive retinal ganglion cells).

View Article and Find Full Text PDF

Macroautophagy/autophagy is a key process in the maintenance of cellular homeostasis. The age-dependent decline in retinal autophagy has been associated with photoreceptor degeneration. Retinal dysfunction can also result from damage to the retinal pigment epithelium (RPE), as the RPE-retina constitutes an important metabolic ecosystem that must be finely tuned to preserve visual function.

View Article and Find Full Text PDF
Article Synopsis
  • Chaperone-mediated autophagy is like a cleanup crew in our cells that helps protect against damage but gets weaker as we get older.
  • The researchers discovered how certain special activators can boost this cleanup crew and even created new versions that can be taken as medicine and reach the brain.
  • They found that these activators help improve eye health in mice with a disease that makes them lose their vision, showing that this could be a promising way to treat similar problems in humans.
View Article and Find Full Text PDF

The retina is part of the central nervous system, its analysis may provide an idea of the health and functionality, not only of the retina, but also of the entire central nervous system, as has been shown in Alzheimer's or Parkinson's diseases. Within the retina, the ganglion cells (RGC) are the neurons in charge of processing and sending light information to higher brain centers. Diverse insults and pathological states cause degeneration of RGC, leading to irreversible blindness or impaired vision.

View Article and Find Full Text PDF

Synaptic loss, neuronal death, and circuit remodeling are common features of central nervous system neurodegenerative disorders. Retinitis pigmentosa (RP), the leading cause of inherited blindness, is a group of retinal dystrophies characterized by photoreceptor dysfunction and death. The insulin receptor, a key controller of metabolism, also regulates neuronal survival and synaptic formation, maintenance, and activity.

View Article and Find Full Text PDF

Mesenchymal stromal cell (MSC) therapy to treat neurodegenerative diseases has not been as successful as expected in some preclinical studies. Because preclinical research is so diverse, it is difficult to know whether the therapeutic outcome is due to the cell type, the type of transplant or the model of disease. Our aim here was to analyze the effect of the type of transplant on neuroprotection and axonal regeneration, so we tested MSCs from the same niche in the same model of neurodegeneration in the three transplantation settings: xenogeneic, syngeneic and allogeneic.

View Article and Find Full Text PDF

Some discrepancies have been observed in the diagnostic efficacy of multifocal visual evoked potential (mfVEP) when evaluating visual field defects in glaucoma patients. Therefore, we evaluated the diagnostic precision of the mfVEP in glaucoma to find its best diagnostic indicator. A systematic review and meta-analysis of quantitative studies published up to 1 April 2021 was performed.

View Article and Find Full Text PDF

Inflammation plays a crucial role in the course of eye diseases, including many vascular retinopathies. Although olive oil is known to have beneficial effects against inflammatory processes, there is no information available on the anti-inflammatory potential of the wild olive tree (namely, acebuche (ACE) for the primitive Spanish lineages). Here we investigate the anti-inflammatory effects of ACE oil in the retina of a mouse model of arterial hypertension, which was experimentally induced by administration of L-NAME (NG-nitro-L-arginine-methyl-ester).

View Article and Find Full Text PDF

Although considered a rare retinal dystrophy, retinitis pigmentosa (RP) is the primary cause of hereditary blindness. Given its diverse genetic etiology (>3000 mutations in >60 genes), there is an urgent need for novel treatments that target common features of the disease. TLR2 is a key activator of innate immune response.

View Article and Find Full Text PDF

One of the causes of nervous system degeneration is an excess of glutamate released upon several diseases. Glutamate analogs, like N-methyl-DL-aspartate (NMDA) and kainic acid (KA), have been shown to induce experimental retinal neurotoxicity. Previous results have shown that NMDA/KA neurotoxicity induces significant changes in the full field electroretinogram response, a thinning on the inner retinal layers, and retinal ganglion cell death.

View Article and Find Full Text PDF

Animal models are invaluable for biomedical research, especially in the context of rare diseases, which have a very low prevalence and are often complex. Concretely mouse models provide key information on rare disease mechanisms and therapeutic strategies that cannot be obtained by using only alternative methods, and greatly contribute to accelerate the development of new therapeutic options for rare diseases. Despite this, the use of experimental animals remains controversial.

View Article and Find Full Text PDF

Cone photoreceptor cell death in inherited retinal diseases, such as Retinitis Pigmentosa (RP), leads to the loss of high acuity and color vision and, ultimately to blindness. In RP, a vast number of mutations perturb the structure and function of rod photoreceptors, while cones remain initially unaffected. Extensive rod loss in advanced stages of the disease triggers cone death by a mechanism that is still largely unknown.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers developed photochromic ligands, known as adrenoswitches, derived from cyclic amidines similar to clonidine, which can precisely manipulate adrenergic neurotransmission.
  • * These adrenoswitches exhibit favorable pharmacological properties, including photochromism and low toxicity, making them useful for various biological applications, demonstrated by their effects on locomotion in zebrafish and pupillary responses in mice.
View Article and Find Full Text PDF