Interest in Unmanned Aerial Vehicles (UAVs) has increased due to their versatility and variety of applications, however their battery life limits their applications. Heterogeneous multi-robot systems can offer a solution to this limitation, by allowing an Unmanned Ground Vehicle (UGV) to serve as a recharging station for the aerial one. Moreover, cooperation between aerial and terrestrial robots allows them to overcome other individual limitations, such as communication link coverage or accessibility, and to solve highly complex tasks, e.
View Article and Find Full Text PDFTeams of mobile robots can be employed in many outdoor applications, such as precision agriculture, search and rescue, and industrial inspection, allowing an efficient and robust exploration of large areas and enhancing the operators' situational awareness. In this context, this paper describes an active and decentralized framework for the collaborative 3D mapping of large outdoor areas using a team of mobile ground robots under limited communication range and bandwidth. A real-time method is proposed that allows the sharing and registration of individual local maps, obtained from 3D LiDAR measurements, to build a global representation of the environment.
View Article and Find Full Text PDFFault detection and fault tolerance represent two of the most important and largely unsolved issues in the field of multirobot systems (MRS). Efficient, long-term operation requires an accurate, timely detection, and accommodation of abnormally behaving robots. Most existing approaches to fault-tolerance prescribe a characterization of normal robot behaviours, and train a model to recognize these behaviours.
View Article and Find Full Text PDFThe work described is part of a long term program of introducing institutional robotics, a novel framework for the coordination of robot teams that stems from institutional economics concepts. Under the framework, institutions are cumulative sets of persistent artificial modifications made to the environment or to the internal mechanisms of a subset of agents, thought to be functional for the collective order. In this article we introduce a formal model of institutional controllers based on Petri nets.
View Article and Find Full Text PDF