Publications by authors named "Pedro Soubelet"

We report a new dark exciton in monolayer MoS_{2} using second harmonic generation spectroscopy. Hereby, the spectrally dependent second harmonic generation intensity splits into two branches, and an anticrossing is observed at ∼25  meV blue detuned from the bright neutral exciton. These observations are indicative of coherent quantum interference arising from strong two-photon light-matter interaction with an excitonic state that is dark for single photon interaction.

View Article and Find Full Text PDF

We report lasing of moiré trapped interlayer excitons (IXs) by integrating a pristine hBN-encapsulated MoSe/WSe heterobilayer into a high- (>10) nanophotonic cavity. We control the cavity-IX detuning using a magnetic field and measure their dipolar coupling strength to be 78 ± 4 micro-electron volts, fully consistent with the 82 micro-electron volts predicted by theory. The emission from the cavity mode shows clear threshold-like behavior as the transition is tuned into resonance with the cavity.

View Article and Find Full Text PDF

The increasing role of two-dimensional (2D) devices requires the development of new techniques for ultrafast control of physical properties in 2D van der Waals (vdW) nanolayers. A special feature of heterobilayers assembled from vdW monolayers is femtosecond separation of photoexcited electrons and holes between the neighboring layers, resulting in the formation of Coulomb force. Using laser pulses, we generate a 0.

View Article and Find Full Text PDF

We report resonant Raman spectroscopy of neutral excitons X^{0} and intravalley trions X^{-} in hBN-encapsulated MoS_{2} monolayer embedded in a nanobeam cavity. By temperature tuning the detuning between Raman modes of MoS_{2} lattice phonons and X^{0}/X^{-} emission peaks, we probe the mutual coupling of excitons, lattice phonons and cavity vibrational phonons. We observe an enhancement of X^{0}-induced Raman scattering and a suppression for X^{-}-induced, and explain our findings as arising from the tripartite exciton-phonon-phonon coupling.

View Article and Find Full Text PDF

Negatively charged boron vacancies () in hexagonal boron nitride (hBN) exhibit a broad emission spectrum due to strong electron-phonon coupling and Jahn-Teller mixing of electronic states. As such, the direct measurement of the zero-phonon line (ZPL) of has remained elusive. Here, we measure the room-temperature ZPL wavelength to be 773 ± 2 nm by coupling the hBN layer to the high- nanobeam cavity.

View Article and Find Full Text PDF

Atomically thin semiconductors can be readily integrated into a wide range of nanophotonic architectures for applications in quantum photonics and novel optoelectronic devices. We report the observation of nonlocal interactions of "free" trions in pristine hBN/MoS_{2}/hBN heterostructures coupled to single mode (Q>10^{4}) quasi 0D nanocavities. The high excitonic and photonic quality of the interaction system stems from our integrated nanofabrication approach simultaneously with the hBN encapsulation and the maximized local cavity field amplitude within the MoS_{2} monolayer.

View Article and Find Full Text PDF

Visualizing eigenmodes is crucial in understanding the behavior of state-of-the-art micromechanical devices. We demonstrate a method to optically map multiple modes of mechanical structures simultaneously. The fast and robust method, based on a modified phase-lock loop, is demonstrated on a silicon nitride membrane and shown to outperform three alternative approaches.

View Article and Find Full Text PDF

Monolayer semiconducting transition metal dichalcogenides are a strongly emergent platform for exploring quantum phenomena in condensed matter, building novel optoelectronic devices with enhanced functionalities. Because of their atomic thickness, their excitonic optical response is highly sensitive to their dielectric environment. In this work, we explore the optical properties of monolayer thick MoSe straddling domain wall boundaries in periodically poled LiNbO.

View Article and Find Full Text PDF

A time-resolved observation of coherent interlayer longitudinal acoustic phonons in thin layers of 2H-MoSe2 is reported. A femtosecond pump-probe technique is used to investigate the evolution of the energy loss of these vibrational modes in a wide selection of MoSe2 flakes with different thicknesses ranging from bilayer up to the bulk limit. By directly analysing the temporal decay of the modes, we can clearly distinguish an abrupt crossover related to the acoustic mean free path of the phonons in a layered system, and the constraints imposed on the acoustic decay channels when reducing the dimensionality.

View Article and Find Full Text PDF