1-Dodecyl-2-methylpyridinium bromide ([C-2-Pic][Br]) and 1-hexadecyl-2-methylpyridinium bromide ([C-2-Pic][Br]) are two ionic liquid crystals presenting thermotropic smectic phases above 80 °C. Aiming to take advantage of the liquid crystalline properties at lower temperatures, lyotropic aqueous systems were prepared from these two organic salts. Both systems were characterized by polarized optical microscopy (POM), X-ray powder diffraction (XRD), and fast field cycling nuclear magnetic resonance (FFC-NMR) relaxometry to assess their texture, phase structure, and molecular dynamics, respectively.
View Article and Find Full Text PDFWater dynamics in mesoporous dextran hydrogel micro/nanoparticles was investigated by means of nuclear magnetic resonance (NMR) techniques. High-resolution H NMR spectra and pulsed field gradient (PFG) NMR diffusometry measurements obtained on swollen state dextran micro/nanogel revealed the existence of different fractions of water molecules based on their interaction with the gel matrix. In addition to the translational diffusion of bulk water, two more diffusion processes characterized with self-diffusion coefficients 1 and 2 orders of magnitude smaller than that of bulk water were identified.
View Article and Find Full Text PDFIndustrial inspection is crucial for maintaining quality and safety in industrial processes. Deep learning models have recently demonstrated promising results in such tasks. This paper proposes YOLOX-Ray, an efficient new deep learning architecture tailored for industrial inspection.
View Article and Find Full Text PDFSoil nutrients assessment has great importance in horticulture. Implementation of an information system for horticulture faces many challenges: (i) great spatial variability within farms (e.g.
View Article and Find Full Text PDFLocal molecular ordering in liquids has attracted a lot of interest from researchers investigating crystallization, but is still poorly understood on the molecular scale. Classical nucleation theory (CNT), a macroscopic thermodynamic description of condensation, has shortcomings when dealing with clusters consisting of tens of molecules. Cluster formation and local order fluctuations in liquid media are difficult to study due to the limited spatial resolution of electron- and photon-imaging methods.
View Article and Find Full Text PDFThis study presents the characterization of water dynamics in cellulose acetate-silica asymmetric membranes with very different pore structures that are associated with a wide range of selective transport properties of ultrafiltration (UF) and nanofiltration (NF). By combining 1H NMR spectroscopy, diffusometry and relaxometry and considering that the spin-lattice relaxation rate of the studied systems is mainly determined by translational diffusion, individual rotations and rotations mediated by translational displacements, it was possible to assess the influence of the porous matrix's confinement on the degree of water ordering and dynamics and to correlate this with UF/NF permeation characteristics. In fact, the less permeable membranes, CA/SiO2-22, characterized by smaller pores induce significant orientational order to the water molecules close to/interacting with the membrane matrix's interface.
View Article and Find Full Text PDFIn this work, the water order and dynamics in hydrated films of flat asymmetric cellulose acetate (CA)/silica, CA/SiO, and hybrid membranes, covering a wide range of nanofiltration (NF) and ultrafiltration (UF) permeation properties, were characterised by deuterium nuclear magnetic resonance (DNMR) relaxation. The range of NF/UF characteristics was attained by subjecting three CA/SiO membranes, prepared from casting solutions with different acetone/formamide ratios to drying post-treatments of solvent exchange and conditioning with surfactant mixtures. Post-treated and pristine CA/SiO membranes were characterised in terms of hydraulic permeability, selective permeation properties and molecular weight cut-off.
View Article and Find Full Text PDFThe colloidal suspensions of aqueous cellulose nanocrystals (CNCs) are known to form liquid crystalline (LC) systems above certain critical concentrations. From an isotropic phase, tactoid formation, growth, and sedimentation have been determined as the genesis of a high-density cholesteric phase, which, after drying, originates solid iridescent films. Herein, the coexistence of a liquid crystal upper phase and an isotropic bottom phase in CNC aqueous suspensions at the isotropic-nematic phase separation is reported.
View Article and Find Full Text PDFThe number of incidents between unmanned aerial vehicles (UAVs) and aircrafts at airports and airfields has been increasing over the last years. To address the problem, in this paper we describe a portable system capable of protecting areas against unauthorized UAVs, which is based on the use of low-cost SDR (software defined radio) platforms. The proposed anti-UAV system supports target localization and integrates effective jamming techniques with the generation of global positioning system (GPS) spoofing signals aimed at the drone.
View Article and Find Full Text PDFIn the field of sensors, in areas such as industrial, clinical, or environment, it is common to find one dimensional (1D) formatted data (e.g., electrocardiogram, temperature, power consumption).
View Article and Find Full Text PDFH spin-lattice relaxation time () measurements were performed to probe the dynamic behavior of water in aqueous suspensions of cellulose nanocrystals (CNCs) and a layered smectite clay mineral with different degrees of concentration. H- experiments were carried out over a wide frequency domain, ranging from a few kilohertz to 500 MHz, with the aid of conventional and fast field cycling nuclear magnetic resonance (NMR) techniques. The experimental relaxometry data illustrate differences between the dynamic behavior of bulk water and that confined in the vicinity of CNC-clay surfaces.
View Article and Find Full Text PDFRare sugars are monosaccharides and their derivatives that are not commonly found in nature. d-Allulose is a rare sugar that is C-3 epimer of fructose and presents an alternative to sucrose with potential health benefits. In this study, different amounts of sucrose, d-allulose, and soy protein isolate (SPI) were used to prepare a set of pectin gels.
View Article and Find Full Text PDFCompartmental epidemiological models are, by far, the most popular in the study of dynamics related with infectious diseases. It is, therefore, not surprising that they are frequently used to study the current COVID-19 pandemic. Taking advantage of the real-time availability of COVID-19 related data, we perform a compartmental model fitting analysis of the portuguese case, using an online open-access platform with the integrated capability of solving systems of differential equations.
View Article and Find Full Text PDFPresently, saving natural resources is increasingly a concern, and water scarcity is a fact that has been occurring in more areas of the globe. One of the main strategies used to counter this trend is the use of new technologies. On this topic, the Internet of Things has been highlighted, with these solutions being characterized by offering robustness and simplicity, while being low cost.
View Article and Find Full Text PDFUnderstanding the behavior of a chemical compound at a molecular level is fundamental, not only to explain its macroscopic properties, but also to enable the control and optimization of these properties. The present work aims to characterize a set of systems based on the ionic liquids [Aliquat][Cl] and [Aliquat][FeCl4] and on mixtures of these with different concentrations of DMSO by means of 1H NMR relaxometry, diffusometry and X-ray diffractometry. Without DMSO, the compounds reveal locally ordered domains, which are large enough to induce order fluctuation as a significant relaxation pathway, and present paramagnetic relaxation enhancement for the [Aliquat][Cl] and [Aliquat][FeCl4] mixture.
View Article and Find Full Text PDFA model of spin-lattice relaxation for spin-1/2 nuclei in the presence of a residual dipole-dipole coupling has been presented. For slow dynamics the model predicts a bi-exponential relaxation at low frequencies, when the residual dipole-dipole interaction dominates the Zeeman coupling. Moreover, according to the model a frequency-specific relaxation enhancement, referred to as Dipolar Relaxation Enhancement (DRE) in analogy to the Quadrupole Relaxation Enhancement (QRE) is expected.
View Article and Find Full Text PDFMolecular dynamics of the antiferroelectric liquid crystal 4'-(octyloxy)biphenyl-4-carboxylate2-fluoro-4-[(octyl-2-yloxy)carbonyl]phenyl (abbreviated as D16) was investigated using different nuclear magnetic resonance (NMR) techniques. D16 molecules form a smectic-C_{α}^{*} phase (SmC_{α}^{*}) in an extremely wide temperature range (∼10 °C). Due to a small tilt of the molecules, this phase is characterized by short switching times, important for new photonic applications.
View Article and Find Full Text PDFThis paper introduces a new way of managing water in irrigation systems, which can be applied to gardens or agricultural fields, replacing human intervention with Wireless Sensor Networks. A typical irrigation system wastes on average 30% of the water used, due to poor management and configuration. This sustainable irrigation system allows a better efficiency in the process of irrigation that can lead to savings for the end user, not only monetary but also in natural resources, such as water and energy, leading to a more sustainable environment.
View Article and Find Full Text PDFIn the search of the predicted biaxial nematic phase, a series of shape-persistent board-shaped mesogens with maximum molecular biaxiality and a dipole along the minor molecular axis were designed to form nematic (N) mesophases. One compound exhibits a wide nematic temperature range, which can be supercooled to room temperature. A comprehensive variable temperature X-ray study on aligned samples reveals patterns being dominated by the form factor of very small aggregates, from which the aspect ratio of the lead compound with length (L) : breadth (B) : width (W) of 10.
View Article and Find Full Text PDFMolecular order and dynamics of the CB-C9-CB liquid crystalline dimer exhibiting the nematic (N) and the twist bend nematic (Ntb) phases were investigated by proton NMR spectroscopy, using fields of 0.78 T and 7.04 T, and relaxometry.
View Article and Find Full Text PDFIn this work, H NMR relaxometry and diffusometry as well as viscometry experiments were carried out as a means to study the molecular dynamics of magnetic and nonmagnetic ionic liquid-based systems. In order to evaluate the effect of a cosolvent on the superparamagnetic properties observed for Aliquat-iron-based magnetic ionic liquids, mixtures comprising different concentrations, 1% and 10% (v/v), of DMSO-d6 were prepared and studied. The results for both magnetic and nonmagnetic systems were consistently analyzed an suggest that, when at low concentrations, DMSO-d6 promotes more structured ionic arrangements, thus enhancing these superparamagnetic properties.
View Article and Find Full Text PDFA study of molecular dynamics of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoro-methylsulphonyl)imide ([Emim][Tf2N]) in solution with deuterated ethanol at different molar concentration and temperatures is presented. The study was performed using H and H nuclear magnetic relaxation and H 1D spectroscopy. The temperature dependence of the spin-lattice relaxation time T of the cations allows the evaluation of the activation energies of the rotational degree of freedom of these molecules.
View Article and Find Full Text PDFLiquid crystals that exhibit de Vries smectic A phases are promising materials for new generations of ferroelectric liquid crystal displays and other electro-optical devices. We investigated the molecular dynamic properties of a rod-like de Vries liquid crystal compound, namely the 9HL, a (S)-hexyl lactate derivative, in the whole mesophasic range. This is the first molecular dynamics' investigation on a de Vries phase, and the interest of this system is related to the understanding of the structural and supramolecular organization of de Vries SmA phases, which has been a subject of a broad scientific debate in the last years.
View Article and Find Full Text PDFA proton nuclear magnetic relaxation dispersion (1)H NMRD study of the molecular dynamics in mixtures of magnetic ionic liquid [P66614][FeCl4] with [P66614][Cl] ionic liquid and mixtures of [P66614][FeCl4] with dimethyl sulfoxide (DMSO) is presented. The proton spin-lattice relaxation rate, R1, was measured in the frequency range of 8 kHz-300 MHz. The viscosity of the binary mixtures was measured as a function of an applied magnetic field, B, in the range of 0-2 T.
View Article and Find Full Text PDFNMR spectroscopy ((1)H, (13)C, (15)N) shows that carbon disulfide reacts spontaneously with 1-butyl-1-methylpyrrolidinium acetate ([BmPyrro][Ac]) in the liquid phase. It is found that the acetate anions play an important role in conditioning chemical reactions with CS2 leading, via coupled complex reactions, to the degradation of this molecule to form thioacetate anion (CH3COS(-)), CO2, OCS, and trithiocarbonate (CS3 (2-)). In marked contrast, the cation does not lead to the formation of any adducts allowing to conclude that, at most, its role consists in assisting indirectly these reactions.
View Article and Find Full Text PDF