Publications by authors named "Pedro Reche"

Article Synopsis
  • Tumor-associated macrophages (TAMs) play a significant role in the tumor microenvironment of oral squamous cell carcinomas (OSCCs) and primarily originate from circulating monocytes that differentiate locally.
  • Research showed that cell culture media from OSCC cell lines, H413 and TR146, encourages monocytes to become M2 macrophages, which are characterized by high CD163 and CD206 expression and low levels of activation markers.
  • Additionally, the study identified specific soluble proteins in the media that promote this differentiation and linked it to an immunosuppressive profile that hinders T cell activation, shedding light on how OSCCs support tumor growth by altering immune cell behavior.
View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a public health concern due to infections with new SARS-CoV-2 variants. Therefore, finding effective preventive and therapeutic treatments against all SARS-CoV-2 variants is of great interest. In this study, we examined the capacity of eucalyptus essential oil (EEO) and eucalyptol (EOL) to prevent SARS-CoV-2 infection, using as a model SARS-CoV-2 Spike pseudotyped lentivirus (SARS-CoV-2 pseudovirus) and 293T cells transfected with human angiotensin-converting enzyme 2 (hACE2-293T cells).

View Article and Find Full Text PDF

Vaccines containing tetanus-diphtheria antigens have been postulated to induce cross-reactive immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which could protect against coronavirus disease (COVID-19). In this work, we investigated the capacity of Tetanus-diphtheria (Td) vaccine to prime existing T cell immunity to SARS-CoV-2. To that end, we first collected known SARS-CoV-2 specific CD8 T cell epitopes targeted during the course of SARS-CoV-2 infection in humans and identified as potentially cross-reactive with Td vaccine those sharing similarity with tetanus-diphtheria vaccine antigens, as judged by Levenshtein edit distances (≤ 20% edits per epitope sequence).

View Article and Find Full Text PDF

B cell epitopes must be visible for recognition by cognate B cells and/or antibodies. Here, we studied that premise for known linear B cell epitopes that were collected from the Immune Epitope Database as being recognized by humans during microbial infections. We found that the majority of such known B cell epitopes are virus-specific linear B cell epitopes (87.

View Article and Find Full Text PDF

Background: Polymerized allergoids conjugated with mannan represent a novel approach of allergen immunotherapy targeting dendritic cells. In this study, we aimed to determine the optimal dose of mannan-allergoid conjugates derived from grass pollen ( and ) administered via either the subcutaneous or sublingual route.

Methods: A randomized, double-blind, placebo-controlled trial with a double-dummy design was conducted, involving 162 participants across 12 centers in Spain.

View Article and Find Full Text PDF

Bacteria are well known to provide heterologous immunity against viral infections through various mechanisms including the induction of innate trained immunity and adaptive cross-reactive immunity. Cross-reactive immunity from bacteria to viruses is responsible for long-term protection and yet its role has been downplayed due the difficulty of determining antigen-specific responses. Here, we carried out a systematic evaluation of the potential cross-reactive immunity from selected bacteria known to induce heterologous immunity against various viruses causing recurrent respiratory infections.

View Article and Find Full Text PDF

CD8 T cells recognize short peptides, more frequently of nine residues, presented by class I major histocompatibility complex (MHC I) molecules in the cell surface of antigen-presenting cells. These epitope peptides are loaded onto MHC I molecules in the endoplasmic reticulum, where they are shuttled from the cytosol by the transporter associated with antigen processing (TAP) as such or as N-terminal extended precursors of up to 16 residues. In this chapter, we describe the use of TAPREG, a tool for predicting TAP binding affinity that has been enhanced to identify potential CD8 T cell epitope precursors transported by TAP.

View Article and Find Full Text PDF

EPIPOX is a specialized online resource intended to facilitate the design of epitope-based vaccines against orthopoxviruses. EPIPOX is built upon a collection of T cell epitopes that are shared by eight pathogenic orthopoxviruses, including variola minor and major strains, monkeypox, cowpox, and vaccinia viruses. In EPIPOX, users can select T cell epitopes attending to the predicted binding to distinct major histocompatibility molecules (MHC) and according to various features that may have an impact on epitope immunogenicity.

View Article and Find Full Text PDF

Vaccines are the most successful and cost-effective medical interventions available to fight infectious diseases. They consist of biological preparations that are capable of stimulating the immune system to confer protective immunity against a particular harmful pathogen/agent. Vaccine design and development have evolved through the years.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) control immune responses and are essential to maintain immune homeostasis and self-tolerance. Hence, it is no coincidence that autoimmune and chronic inflammatory disorders are associated with defects in Tregs. These diseases have currently no cure and are treated with palliative drugs such as immunosuppressant and immunomodulatory agents.

View Article and Find Full Text PDF

Activation of the integrin phagocytic receptors CR3 (αβ, CD11b/CD18) and CR4 (αβ, CD11c/CD18) requires Rap1 activation and RIAM function. RIAM controls integrin activation by recruiting Talin to β subunits, enabling the Talin-Vinculin interaction, which in term bridges integrins to the actin-cytoskeleton. RIAM also recruits VASP to phagocytic cups and facilitates VASP phosphorylation and function promoting particle internalization.

View Article and Find Full Text PDF

Prediction of B cell epitopes that can replace the antigen for antibody production and detection is of great interest for research and the biotech industry. Here, we developed a novel BLAST-based method to predict linear B cell epitopes. To that end, we generated a BLAST-formatted database upon a dataset of 62,730 known linear B cell epitope sequences and considered as a B cell epitope any peptide sequence producing ungapped BLAST hits to this database with identity ≥ 80% and length ≥ 8.

View Article and Find Full Text PDF

The outbreak of SARS-CoV-2 leading to the declaration of the COVID-19 global pandemic has led to the urgent development and deployment of several COVID-19 vaccines. Many of these new vaccines, including those based on mRNA and adenoviruses, are aimed to generate neutralizing antibodies against the spike glycoprotein, which is known to bind to the receptor angiotensin converting enzyme 2 (ACE2) in host cells via the receptor-binding domain (RBD). Antibodies binding to this domain can block the interaction with the receptor and prevent viral entry into the cells.

View Article and Find Full Text PDF

Pemphigoid (Pg) diseases are a group of potentially fatal autoimmune mucocutaneous diseases. They have different clinical phenotypes, involving only the skin or multiple mucous membranes. They occur globally and frequently affect the elderly.

View Article and Find Full Text PDF
Article Synopsis
  • The oral mucosa constantly encounters various stimuli that require specific immune responses, and previous research showed that oral epithelial cells (OECs) can suppress immune activity against bacteria.
  • In this study, the researchers further investigated how these OECs inhibit T cell activation and discovered that this suppression is not related to Treg polarization and occurs at the genetic level.
  • OECs perform their immunosuppressive function effectively but can be disrupted by conditions such as viral mimicry or the blocking of specific pathways, indicating their role in maintaining oral immune balance.
View Article and Find Full Text PDF
Article Synopsis
  • - The oral mucosa plays a crucial role in the immune system, acting as a defense against harmful pathogens while also interacting with various harmless substances like food and beneficial bacteria.
  • - Understanding how the oral mucosa maintains immune tolerance—especially through dendritic and regulatory T cells—remains a complex area of study, with ongoing research defining these mechanisms.
  • - The contribution of epithelial cells in the oral mucosa is significant, as they help modulate both innate and adaptive immunity, highlighting the interconnected nature of immune tolerance mechanisms in this region.
View Article and Find Full Text PDF

Prediction of linear B cell epitopes is of interest for the production of antigen-specific antibodies and the design of peptide-based vaccines. Here, we present BCEPS, a web server for predicting linear B cell epitopes tailored to select epitopes that are immunogenic and capable of inducing cross-reactive antibodies with native antigens. BCEPS implements various machine learning models trained on a dataset including 555 linearized conformational B cell epitopes that were mined from antibody-antigen protein structures.

View Article and Find Full Text PDF

Background: The diagnosis of coeliac disease (CD) in individuals that have started a gluten-free diet (GFD) without an adequate previous diagnostic work-out is a challenge. Several immunological assays such as IFN-γ ELISPOT have been developed to avoid the need of prolonged gluten challenge to induce the intestinal damage. We aimed to evaluate the diagnostic accuracy of activated gut-homing CD8 and TCRγδ T cells in blood after a 3-day gluten challenge and to compare it with the performance of IFN-γ ELISPOT in a HLA-DQ2.

View Article and Find Full Text PDF

The COVID-19 pandemic has highlighted the need to come out with quick interventional solutions that can now be obtained through the application of different bioinformatics software to actively improve the success rate. Technological advances in fields such as computer modeling and simulation are enriching the discovery, development, assessment and monitoring for better prevention, diagnosis, treatment and scientific evidence generation of specific therapeutic strategies. The combined use of both molecular prediction tools and computer simulation in the development or regulatory evaluation of a medical intervention, are making the difference to better predict the efficacy and safety of new vaccines.

View Article and Find Full Text PDF

Human rhinovirus (RV) is the most common cause of upper respiratory infections and exacerbations of asthma. In this work, we selected 14 peptides (6 from RV A and 8 from RV C) encompassing potential CD4 T cell epitopes. Peptides were selected for being highly conserved in RV A and C serotypes and predicted to bind to multiple human leukocyte antigen class II (HLA II) molecules.

View Article and Find Full Text PDF

High-acuity αβT cell receptor (TCR) recognition of peptides bound to major histocompatibility complex molecules (pMHCs) requires mechanosensing, a process whereby piconewton (pN) bioforces exert physical load on αβTCR-pMHC bonds to dynamically alter their lifetimes and foster digital sensitivity cellular signaling. While mechanotransduction is operative for both αβTCRs and pre-TCRs within the αβT lineage, its role in γδT cells is unknown. Here, we show that the human DP10.

View Article and Find Full Text PDF

Motivation: In eukaryotes, proteins targeted for secretion contain a signal peptide, which allows them to proceed through the conventional ER/Golgi-dependent pathway. However, an important number of proteins lacking a signal peptide can be secreted through unconventional routes, including that mediated by exosomes. Currently, no method is available to predict protein secretion via exosomes.

View Article and Find Full Text PDF