Publications by authors named "Pedro Ramirez-Gonzalez"

In this work a systematic study over a wide number of final thermodynamic states for two gel-forming liquids was performed. Such two kind of gel formers are distinguished by their specific interparticle interaction potential. We explored several thermodynamic states determining the thermodynamic, structural and dynamic properties of both liquids after a sudden temperature change.

View Article and Find Full Text PDF

In this work we implement a machine learning method to predict the thermodynamic state of a liquid using only its microscopic structure provided by the radial distribution function (RDF). The main goal is to determine the equation of state of the system. The goal is achieved by predicting the density, temperature or both at the same time using only the RDF.

View Article and Find Full Text PDF

We report an experimental and theoretical investigation of glass formation in soft thermo-sensitive colloids following two different routes: a gradual increase of the particle number density at constant temperature and an increase of the radius in a fixed volume at constant particle number density. Confocal microscopy experiments and the non-equilibrium self-consistent generalized Langevin equation (NE-SCGLE) theory consistently show that the two routes lead to a dynamically comparable state at sufficiently long aging times. However, experiments reveal the presence of moderate but persistent structural differences.

View Article and Find Full Text PDF

The transformation of fog at a non-visible water layer on a membrane of low-density polyethylene (LDPE) and ethylene-vinyl acetate (EVA) was evaluated. Nonionic surfactants of major demand in the polyolefin industry were studied. A kinetic study using a hot fog chamber showed that condensation is controlled by both the diffusion and permanency of the surfactant more than by the change of the surface energy developed by the wetting agents.

View Article and Find Full Text PDF

The recent predictions of the self-consistent generalized Langevin equation theory, describing the existence of unusual partially arrested states in the context of ionic liquids, were probed using all-atom molecular dynamics simulations of a room-temperature ionic liquid. We have found a slower diffusion of the smaller anions compared with the large cations for a wide range of temperatures. The arrest mechanism consists on the formation of a strongly repulsive glass by the anions, stabilized by the long range electrostatic potential.

View Article and Find Full Text PDF

In this work, we have performed molecular dynamics (MD) simulations to compare the structural and dynamical properties of three ionic liquids (ILs), 1-ethyl-3-methyl-imidazolium tetrafluorborate ([EMI(+)][BF4(-)]), 1,1'-dimethyl-4,4'-bipyridinium bis(tetrafluorborate) ([VIO(2+)][BF4(-)]2), and 1,1'-dimethyl-4,4'-bipyridinium bis(trifluoromethylsulfonyl)imide (bistriflimide in short) ([VIO(2+)][Tf2N(-)]2), aiming to discover the influence of ion rigidity on the physical properties of ILs. [VIO(2+)] is more rigid than [EMI(+)], and [BF4(-)] is more rigid than [Tf2N(-)]. [VIO(2+)][BF4(-)]2 has an anion distribution different from the other two by the higher and sharper peaks in the cation-anion radial distribution functions, reflecting a close-packed local structure of anions around cations.

View Article and Find Full Text PDF

The recently developed nonequilibrium extension of the self-consistent generalized Langevin equation theory of irreversible relaxation [Ramírez-González and Medina-Noyola, Phys. Rev. E 82, 061503 (2010); Ramírez-González and Medina-Noyola, Phys.

View Article and Find Full Text PDF

We employ the principle of dynamic equivalence between soft-sphere and hard-sphere fluids [Phys. Rev. E 68, 011405 (2003)] to describe the interplay of the effects of varying the density n, the temperature T, and the softness (characterized by a softness parameter ν(-1)) on the dynamics of glass-forming soft-sphere liquids in terms of simple scaling rules.

View Article and Find Full Text PDF

We report a systematic molecular dynamics study of the isochoric equilibration of hard-sphere fluids in their metastable regime close to the glass transition. The thermalization process starts with the system prepared in a nonequilibrium state with the desired final volume fraction ϕ for which we can obtain a well-defined nonequilibrium static structure factor S(0)(k;ϕ). The evolution of the α-relaxation time τ(α)(k) and long-time self-diffusion coefficient D(L) as a function of the evolution time t(w) is then monitored for an array of volume fractions.

View Article and Find Full Text PDF

The nonequilibrium self-consistent generalized Langevin equation theory of colloid dynamics is used to describe the nonstationary aging processes occurring in a suddenly quenched model colloidal liquid with hard-sphere plus short-ranged attractive interactions, whose static structure factor and van Hove function evolve irreversibly from the initial conditions before the quench to a final dynamically arrested state. The comparison of our numerical results with available simulation data are highly encouraging.

View Article and Find Full Text PDF

A nonequilibrium extension of Onsager's canonical theory of thermal fluctuations is employed to derive a self-consistent theory for the description of the statistical properties of the instantaneous local concentration profile n(r,t) of a colloidal liquid in terms of the coupled time-evolution equations of its mean value n(r,t) and of the covariance [Formula in text] of its fluctuations δn(r,t)=n(r,t)-n(r,t). These two coarse-grained equations involve a local mobility function b(r,t) which, in its turn, is written in terms of the memory function of the two-time correlation function [Formula in text]. For given effective interactions between colloidal particles and applied external fields, the resulting self-consistent theory is aimed at describing the evolution of a strongly correlated colloidal liquid from an initial state with arbitrary mean and covariance n(0)(r) and σ(0)(r,r') toward its equilibrium state characterized by the equilibrium local concentration profile n(eq)(r) and equilibrium covariance σ(eq)(r,r').

View Article and Find Full Text PDF

In this work we propose a theory to describe the irreversible diffusive relaxation of the local concentration of a colloidal dispersion that proceeds toward its stable thermodynamic equilibrium state, but which may in the process be trapped in metastable or dynamically arrested states. The central assumption of this theory is that the irreversible relaxation of the macroscopically observed mean value [Formula: see text] of the local concentration of colloidal particles is described by a diffusion equation involving a local mobility b(*)(r,t) that depends not only on the mean value [Formula: see text] but also on the covariance [Formula: see text] of the fluctuations [Formula: see text]. This diffusion equation must hence be solved simultaneously with the relaxation equation for the covariance σ(r,r';t), and here we also derive the corresponding relaxation equation.

View Article and Find Full Text PDF