Around 13% of fossil fuels globally are used for non-combustion purposes. Fossil fuel processing plants, such as petroleum refineries, exhibit interdependent material and energy system dynamics, making the transition away from fossil fuels in energy systems more challenging without addressing the non-energy outputs. This study explores the future role of fossil fuels for non-energy purposes in climate-stringent scenarios with restrictions on alternative feedstock availability, focusing on the primary chemicals sector.
View Article and Find Full Text PDFMost of the world's nations (around 130) have committed to reaching net-zero carbon dioxide or greenhouse gas (GHG) emissions by 2050, yet robust policies rarely underpin these ambitions. To investigate whether existing and expected national policies will allow Brazil to meet its net-zero GHG emissions pledge by 2050, we applied a detailed regional integrated assessment modelling approach. This included quantifying the role of nature-based solutions, such as the protection and restoration of ecosystems, and engineered solutions, such as bioenergy with carbon capture and storage.
View Article and Find Full Text PDFImprovements in modelling energy systems of populous emerging economies are highly decisive for a successful global energy transition. The models used-increasingly open source-still need more appropriate open data. As an illustrative example, we take the Brazilian energy system, which has great potential for renewable energy resources but still relies heavily on fossil fuels.
View Article and Find Full Text PDFAviation and shipping account for 22% of total transport-related CO emissions. Low-carbon fuels (such as biofuels and e-fuels) are the most promising alternatives to deeply decarbonize air and maritime transport. A number of technological routes focused on the production of renewable jet fuel can coproduce marine fuels, emulating the economies of scope of crude oil refineries.
View Article and Find Full Text PDFUnlabelled: Integrated assessment models (IAMs) indicate biomass as an essential energy carrier to reduce GHG emissions in the global energy system. However, few IAMs represent the possibility of co-producing final energy carriers and feedstock. This study fills this gap by developing an integrated analysis of energy, land, and materials.
View Article and Find Full Text PDF