Over the last decades, the increased incidence of metabolic disorders, such as type two diabetes and obesity, has motivated researchers to investigate new enzyme inhibitors. In this study, the inhibitory effects of synthetic amino acid derivatives (PPC80, PPC82, PPC84, PPC89, and PPC101) on the activity of digestive enzymes were assessed using in vitro assays. The inhibitory effect was determined by the inhibition percentage and the 50% inhibitory concentration (IC), and the mechanism of action was investigated using kinetic parameters and Lineweaver-Burk plots.
View Article and Find Full Text PDFMethylthiolation reactions are usually explored to access organosulfur compounds using methanethiol, an extremely flammable and toxic compound. Herein, methylthiomethyl esters were successfully applied as novel methylthiolation reagents in a low cost, transition-metal-free methodology. These reagents allowed the methylthiolation of a wide scope of chalcones, acyl ester derivatives and Morita-Baylis-Hillman acetates with good group tolerance, affording the methylthiolated products in moderate to excellent yields.
View Article and Find Full Text PDFBiometals
December 2017
This article has been corrected. One of the author names was given incorrect. Please find in this erratum the correct author name: "Heloiza Diniz Nicolella" that should be regarded as final by the reader.
View Article and Find Full Text PDFBiometals
December 2017
Novel lipophilic gold(I) complexes containing 1,3,4-oxadiazol-2-thione or 1,3-thiazolidine-2-thione derivatives were synthesized and characterized by IR, high resolution mass spectrometry, and H, C P NMR. The cytotoxicity of the compounds was evaluated considering cisplatin and/or auranofin as reference in different tumor cell lines: colon cancer (CT26WT), metastatic skin melanoma (B16F10), breast adenocarcinoma (MCF-7), cervical carcinoma (HeLa), glioblastoma (M059 J). Normal human lung fibroblasts (GM07492-A) and kidney normal cell (BHK-21) were also evaluated.
View Article and Find Full Text PDF