To date, there are no specific treatment regimens for HIV-1-related central nervous system (CNS) complications, such as HIV-1-associated neurocognitive disorders (HAND). Here, we report that two newly generated CNS-targeting HIV-1 protease (PR) inhibitors (PIs), GRL-08513 and GRL-08613, which have a P1-3,5--fluorophenyl or P1--monofluorophenyl ring and P2-tetrahydropyrano-tetrahydrofuran (-THF) with a sulfonamide isostere, are potent against wild-type HIV-1 strains and multiple clinically isolated HIV-1 strains (50% effective concentration [EC]: 0.0001 to ∼0.
View Article and Find Full Text PDFThere is currently no specific therapeutics for the HIV-1-related central nervous system (CNS) complications. Here we report that three newly designed CNS-targeting HIV-1 protease inhibitors (PIs), GRL-083-13, GRL-084-13, and GRL-087-13, which contain a P1-3,5--fluorophenyl or P1--monofluorophenyl ring, and P2--tetrahydrofuran (-THF) or P2-tetrahydropyrano-tetrahydrofuran (-THF), with a sulfonamide isostere, are highly active against wild-type HIV-1 strains and primary clinical isolates (50% effective concentration [EC], 0.0002 to ∼0.
View Article and Find Full Text PDFWe report that GRL-09510, a novel HIV-1 protease inhibitor (PI) containing a newly-generated P2-crown-tetrahydrofuranylurethane (Crwn-THF), a P2'-methoxybenzene, and a sulfonamide isostere, is highly active against laboratory and primary clinical HIV-1 isolates (EC: 0.0014-0.0028 μM) with minimal cytotoxicity (CC: 39.
View Article and Find Full Text PDFWe report here that GRL-10413, a novel nonpeptidic HIV-1 protease inhibitor (PI) containing a modified P1 moiety and a hydroxyethylamine sulfonamide isostere, is highly active against laboratory HIV-1 strains and primary clinical isolates (50% effective concentration [EC] of 0.00035 to 0.0018 μM), with minimal cytotoxicity (50% cytotoxic concentration [CC] = 35.
View Article and Find Full Text PDFWe report here that GRL-0739, a novel nonpeptidic HIV-1 protease inhibitor containing a tricycle (cyclohexyl-bis-tetrahydrofuranylurethane [THF]) and a sulfonamide isostere, is highly active against laboratory HIV-1 strains and primary clinical isolates (50% effective concentration [EC50], 0.0019 to 0.0036 μM), with minimal cytotoxicity (50% cytotoxic concentration [CC50], 21.
View Article and Find Full Text PDFThe structure-based design, synthesis, biological evaluation, and X-ray structural studies of fluorine-containing HIV-1 protease inhibitors are described. The synthesis of both enantiomers of the gem-difluoro-bis-THF ligands was carried out in a stereoselective manner using a Reformatskii-Claisen reaction as the key step. Optically active ligands were converted into protease inhibitors.
View Article and Find Full Text PDFWe designed, synthesized, and identified two novel nonpeptidic human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs), GRL-04810 and GRL-05010, containing the structure-based designed privileged cyclic ether-derived nonpeptide P2 ligand, bis-tetrahydrofuranylurethane (bis-THF), and a difluoride moiety, both of which are active against the laboratory strain HIV-1LAI (50% effective concentrations [EC50s], 0.0008 and 0.003 μM, respectively) with minimal cytotoxicity (50% cytotoxic concentrations [CC50s], 17.
View Article and Find Full Text PDFWe report that GRL-0519, a novel nonpeptidic human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI) containing tris-tetrahydrofuranylurethane (tris-THF) and a sulfonamide isostere, is highly potent against laboratory HIV-1 strains and primary clinical isolates (50% effective concentration [EC50], 0.0005 to 0.0007 μM) with minimal cytotoxicity (50% cytotoxic concentration [CC50], 44.
View Article and Find Full Text PDF