Edible Insects (EIs) are an alternative source of bioactive compounds such as proteins or fatty acids and micronutrients as vitamins or minerals, thus showing potential to replace traditional foodstuffs in an economical and environmentally friendly way. Nonetheless, EIs can accumulate hazardous chemicals such as mycotoxins and heavy metals. The aim of the present study is to determine mycotoxins and heavy metal content in raw insect samples and those resulting products obtained after supercritical fluid extraction (SFE).
View Article and Find Full Text PDFThe control of heat-resistant fungi (HRFs), which cause spoilage of heat-treated fruit products, is considered a challenge for the fruit juice and beverage industry and requires new strategies for the development of antifungal compounds. In this study, four antifungal proteins (AFPs) from Penicillium digitatum (PdAfpB) and Penicillium expansum (PeAfpA, PeAfpB and PeAfpC), were evaluated against conidia from a representative collection of HRFs. A total of 19 strains from 16 different species belonging to the genera Aspergillus, Hamigera, Paecilomyces, Rasamsonia, Sarocladium, Talaromyces and Thermoascus were included in the study.
View Article and Find Full Text PDFThis study aimed to isolate and identify fungal species involved in sliced bread spoilage, and to evaluate their susceptibility to antifungal proteins of fungal origin (AFPs). Proteins include PdAfpB from Penicillium digitatum and PeAfpA, PeAfpB and PeAfpC from Penicillium expansum. Based on morphological criteria, a group of sixteen fungal isolates were selected and subsequently identified at the species level using sequence analysis.
View Article and Find Full Text PDFFungal antifungal proteins (AFPs) have attracted attention as novel biofungicides. Their exploitation requires safe and cost-effective producing biofactories. Previously, Penicillium chrysogenum and Penicillium digitatum produced recombinant AFPs with the use of a P.
View Article and Find Full Text PDFThe global challenge to prevent fungal spoilage and mycotoxin contamination on food and feed requires the development of new antifungal strategies. Antimicrobial peptides and proteins (AMPs) with antifungal activity are gaining much interest as natural antifungal compounds due to their properties such as structure diversity and function, antifungal spectrum, mechanism of action, high stability and the availability of biotechnological production methods. Given their multistep mode of action, the development of fungal resistance to AMPs is presumed to be slow or delayed compared to conventional fungicides.
View Article and Find Full Text PDFphytopathogenic species provoke severe postharvest disease and economic losses. is the main pome fruit phytopathogen while and cause citrus green and blue mold, respectively. Control strategies rely on the use of synthetic fungicides, but the appearance of resistant strains and safety concerns have led to the search for new antifungals.
View Article and Find Full Text PDFThe global challenge to prevent fungal spoilage and mycotoxin contamination on foods and feeds require the development of new antifungal strategies. Filamentous fungi encode diverse antifungal proteins (AFPs), which offer a great potential for the control of contaminant fungi. In this study, four AFPs from Penicillium digitatum (PdAfpB) and Penicillium expansum (PeAfpA, PeAfpB and PeAfpC) belonging to classes A, B and C, were tested against a representative panel of mycotoxin-producing fungi.
View Article and Find Full Text PDFThe present study addressed the protective effects against oxidative stress (OS) of a cocoa powder extract (CPEX) on the protein expression profile of . A proteomic analysis was performed after culture preincubation with CPEX either without stress (-OS) or under stress conditions (+OS) (5 mM of HO). LC-MS/MS identified 33 differentially expressed proteins (-OS: 14, +OS: 19) that were included By Gene Ontology analysis in biological processes: biosynthesis of amino acids, carbohydrate metabolism and reactive oxygen species metabolic process.
View Article and Find Full Text PDFMultiplex real-time polymerase chain reaction (PCR) provides a fast and accurate DNA-based tool for the simultaneous amplification of more than one target sequence in a single reaction. Here a duplex real-time PCR assay is described for the simultaneous detection of Aspergillus carbonarius and members of the Aspergillus niger aggregate, which are the main responsible species for ochratoxin A (OTA) contamination in grapes. This single tube reaction targets the beta-ketosynthase and the acyl transferase domains of the polyketide synthase of A.
View Article and Find Full Text PDFAspergillus carbonarius is the main species responsible for ochratoxin A accumulation in wine grapes and consequently, its rapid and sensitive detection is increasingly investigated. A new real-time PCR (RTi-PCR) based procedure was developed for the rapid and specific detection and quantification of A. carbonarius in wine grapes.
View Article and Find Full Text PDFThe population structure and genetic variation of two begomoviruses: tomato yellow leaf curl Sardinia virus (TYLCSV) and tomato yellow leaf curl virus (TYLCV) in tomato crops of Spain were studied from 1997 until 2001. Restriction digestion of a genomic region comprised of the CP coat protein gene (CPR) of 358 TYLC virus isolates enabled us to classify them into 14 haplotypes. Nucleotide sequences of two genomic regions: CPR, and the surrounding intergenic region (SIR) were determined for at least two isolates per haplotype.
View Article and Find Full Text PDF