A critical challenge in glioma treatment is detecting tumour infiltration during surgery to achieve safe maximal resection. Unfortunately, safely resectable residual tumour is found in the majority of patients with glioma after surgery, causing early recurrence and decreased survival. Here we present FastGlioma, a visual foundation model for fast (<10 s) and accurate detection of glioma infiltration in fresh, unprocessed surgical tissue.
View Article and Find Full Text PDFOncostreams are self-organized structures formed by spindle-like, elongated, self-propelled cells recently described in glioblastomas and especially in gliosarcomas. Cells within these structures either move as large clusters in one main direction, flocks, or as linear, intermingling collections of cells advancing in opposite directions, streams. Round, passive cells are also observed, either inside or segregated from the oncostreams.
View Article and Find Full Text PDFBrain tumors in children and adults differ greatly in patient outcomes and responses to radiotherapy and chemotherapy. Moreover, the prevalence of recurrent mutations in histones and chromatin regulatory proteins in pediatric and young adult gliomas suggests that the chromatin landscape is rewired to support oncogenic programs. These early somatic mutations dysregulate widespread genomic loci by altering the distribution of histone post-translational modifications (PTMs) and, in consequence, causing changes in chromatin accessibility and in the histone code, leading to gene transcriptional changes.
View Article and Find Full Text PDFThe majority of primary brain tumors are gliomas, among which glioblastoma multiforme (GBM) is the most common malignant brain tumor in adults. GBM has a median survival of 18-24 months, and despite extensive research it remains incurable, thus novel therapies are urgently needed. The current standard of care is a combination of surgery, radiation, and chemotherapy, but still remains ineffective due to the invasive nature and high recurrence of gliomas.
View Article and Find Full Text PDFHistone deacetylases (HDACs) have a wide range of targets and can rewire both the chromatin and lipidome of cancer cells. In this study, we show that valproic acid (VPA), a brain penetrant anti-seizure medication and histone deacetylase inhibitor, inhibits the growth of IDH1 mutant tumors in vivo and in vitro, with at least some selectivity over IDH1 wild-type tumors. Surprisingly, genes upregulated by VPA showed no enhanced chromatin accessibility at the promoter, but there was a correlation between VPA-downregulated genes and diminished promoter chromatin accessibility.
View Article and Find Full Text PDFGlioblastoma (GBM) remains a challenge in Neuro-oncology, with a poor prognosis showing only a 5% survival rate beyond two years. This is primarily due to its aggressiveness and intra-tumoral heterogeneity, which limits complete surgical resection and reduces the efficacy of existing treatments. The existence of oncostreams-neuropathological structures comprising aligned spindle-like cells from both tumor and non-tumor origins- is discovered earlier.
View Article and Find Full Text PDFGliomas are the most prevalent and devastating primary malignant brain tumors in adults. Despite substantial advances in understanding glioma biology, there have been no regulatory drug approvals in the US since bevacizumab in 2009 and tumor treating fields in 2011. Recent phase III clinical trials have failed to meet their prespecified therapeutic primary endpoints, highlighting the need for novel therapies.
View Article and Find Full Text PDFPediatric high-grade gliomas (pHGGs) are diffuse and highly aggressive CNS tumors which remain incurable, with a 5-year overall survival of less than 20%. Within glioma, mutations in the genes encoding the histones H3.1 and H3.
View Article and Find Full Text PDFCollective behavior spans several orders of magnitude of biological organization, from cell colonies to flocks of birds. We used time-resolved tracking of individual glioblastoma cells to investigate collective motion in an ex vivo model of glioblastoma. At the population level, glioblastoma cells display weakly polarized motion in the (directional) velocities of single cells.
View Article and Find Full Text PDFCollective cell behavior contributes to all stages of cancer progression. Understanding how collective behavior emerges through cell-cell interactions and decision-making will advance our understanding of cancer biology and provide new therapeutic approaches. Here, we summarize an interdisciplinary discussion on multicellular behavior in cancer, draw lessons from other scientific disciplines, and identify future directions.
View Article and Find Full Text PDFMolecular classification has transformed the management of brain tumors by enabling more accurate prognostication and personalized treatment. However, timely molecular diagnostic testing for patients with brain tumors is limited, complicating surgical and adjuvant treatment and obstructing clinical trial enrollment. In this study, we developed DeepGlioma, a rapid (<90 seconds), artificial-intelligence-based diagnostic screening system to streamline the molecular diagnosis of diffuse gliomas.
View Article and Find Full Text PDFDevelopment of spatial-integrative pre-clinical models is needed for glioblastoma, which are heterogenous tumors with poor prognosis. Here, we present an optimized protocol to generate three-dimensional ex vivo explant slice glioma model from orthotopic tumors, genetically engineered mouse models, and fresh patient-derived specimens. We describe a step-by-step workflow for tissue acquisition, dissection, and sectioning of 300-μm tumor slices maintaining cell viability.
View Article and Find Full Text PDFPurpose: Mutant isocitrate dehydrogenase 1 (mIDH1) alters the epigenetic regulation of chromatin, leading to a hypermethylation phenotype in adult glioma. This work focuses on identifying gene targets epigenetically dysregulated by mIDH1 to confer therapeutic resistance to ionizing radiation (IR).
Experimental Design: We evaluated changes in the transcriptome and epigenome in a radioresistant mIDH1 patient-derived glioma cell culture (GCC) following treatment with an mIDH1-specific inhibitor, AGI-5198.
Epigenetic remodeling is a molecular hallmark of gliomas, and it has been identified as a key mediator of glioma progression. Epigenetic dysregulation contributes to gliomagenesis, tumor progression, and responses to immunotherapies, as well as determining clinical features. This epigenetic remodeling includes changes in histone modifications, chromatin structure, and DNA methylation, all of which are driven by mutations in genes such as histone 3 genes (H3C1 and H3F3A), isocitrate dehydrogenase 1/2 (IDH1/2), α-thalassemia/mental retardation, X-linked (ATRX), and additional chromatin remodelers.
View Article and Find Full Text PDFIntroduction: High-grade gliomas (HGG) are the most common malignant primary brain tumors in adults, with a median survival of ~18 months. The standard of care (SOC) is maximal safe surgical resection, and radiation therapy with concurrent and adjuvant temozolomide. This protocol remains unchanged since 2005, even though HGG median survival has marginally improved.
View Article and Find Full Text PDFGlioblastoma (GBM), an aggressive high-grade glial tumor, is resistant to therapy and has a poor prognosis due to its universal recurrence rate. GBM cells interact with the non-cellular components in the tumor microenvironment (TME), facilitating their rapid growth, evolution, and invasion into the normal brain. Herein we discuss the complexity of the interactions between the cellular and non-cellular components of the TME and advances in the field as a whole.
View Article and Find Full Text PDFGlioma stem cells (GSC) exhibit plasticity in response to environmental and therapeutic stress leading to tumor recurrence, but the underlying mechanisms remain largely unknown. Here, we employ single-cell and whole transcriptomic analyses to uncover that radiation induces a dynamic shift in functional states of glioma cells allowing for acquisition of vascular endothelial-like and pericyte-like cell phenotypes. These vascular-like cells provide trophic support to promote proliferation of tumor cells, and their selective depletion results in reduced tumor growth post-treatment in vivo.
View Article and Find Full Text PDFThe preclinical and clinical development of novel immunotherapies for the treatment of central nervous system (CNS) tumors is advancing at a rapid pace. High-grade gliomas (HGG) are aggressive tumors with poor prognoses in both adult and pediatric patients, and innovative and effective therapies are greatly needed. The use of cytotoxic chemotherapies has marginally improved survival in some HGG patient populations.
View Article and Find Full Text PDF