Publications by authors named "Pedro L Muino"

Time dependent fluorescence Stokes (emission wavelength) shifts (TDFSS) from tryptophan (Trp) following sub-picosecond excitation are increasingly used to investigate protein dynamics, most recently enabling active research interest into water dynamics near the surface of proteins. Unlike many fluorescence probes, both the efficiency and the wavelength of Trp fluorescence in proteins are highly sensitive to microenvironment, and Stokes shifts can be dominated by the well-known heterogeneous nature of protein structure, leading to what we call pseudo-TDFSS: shifts that arise from differential decay rates of subpopulations. Here we emphasize a novel, general method that obviates pseudo-TDFSS by replacing Trp by 5-fluorotryptophan (5Ftrp), a fluorescent analogue with higher ionization potential and greatly suppressed electron-transfer quenching.

View Article and Find Full Text PDF

The protein-water interface is a critical determinant of protein structure and function, yet the precise nature of dynamics in this complex system remains elusive. Tryptophan fluorescence has become the probe of choice for such dynamics on the picosecond time scale (especially via fluorescence "upconversion"). In the absence of ultrafast ("quasi-static") quenching from nearby groups, the TDFSS (time-dependent fluorescence Stokes shift) for exposed Trp directly reports on dipolar relaxation near the interface (both water and polypeptide).

View Article and Find Full Text PDF

Tryptophan (Trp) fluorescence is potentially a powerful probe for studying the conformational ensembles of proteins in solution, as it is highly sensitive to the local electrostatic environment of the indole side chain. However, interpretation of the wavelength-dependent complex fluorescence decays of proteins has been stymied by controversy about two plausible origins of the typical multiple fluorescence lifetimes: multiple ground-state populations or excited-state relaxation. The latter naturally predicts the commonly observed wavelength-lifetime correlation between decay components, which associates short lifetimes with blue-shifted emission spectra and long lifetimes with red-shifted spectra.

View Article and Find Full Text PDF

We report quantum mechanical-molecular mechanical (QM-MM) predictions of fluorescence quantum yields for 20 tryptophans in 17 proteins, whose yields span the range from 0.01 to 0.3, using ab initio computed coupling matrix elements for photoinduced electron transfer from the 1La excited indole ring to a local backbone amide.

View Article and Find Full Text PDF

Several intermediates for the CH(3)SH + OH(*) --> CH(3)S(*) + H(2)O reaction were identified using MP2(full) 6-311+g(2df,p) ab initio calculations. An adduct, CH(3)S(H)OH(*), I, with electronic energy 13.63 kJ mol(-1) lower than the reactants, and a transition state, II(double dagger), located 5.

View Article and Find Full Text PDF