Publications by authors named "Pedro J I Salas"

In several human cancers, ErbB2 over-expression facilitates the formation of constitutively active homodimers resistant to internalization which results in progressive signal amplification from the receptor, conducive to cell survival, proliferation, or metastasis. Here we report on studies of the influence of ErbB2 over-expression on localization and signaling in polarized Caco-2 and MDCK cells, two established models to study molecular trafficking. In these cells, ErbB2 is not over-expressed and shares basolateral localization with ErbB3.

View Article and Find Full Text PDF

Atypical PKC (PKC iota) is a key organizer of cellular asymmetry. Sequential extractions of intestinal cells showed a pool of enzymatically active PKC iota and the chaperone Hsp70.1 attached to the apical cytoskeleton.

View Article and Find Full Text PDF

Atypical protein kinase iota (PKCiota) is a key organizer of the apical domain in epithelial cells. Ezrin is a cytosolic protein that, upon activation by phosphorylation of T567, is localized under the apical membrane where it connects actin filaments to membrane proteins and recruits protein kinase A (PKA). To identify the kinase that phosphorylates ezrin T567 in simple epithelia, we analyzed the expression of active PKC and the appearance of T567-P during enterocyte differentiation in vivo.

View Article and Find Full Text PDF

Intermediate filaments have long been considered mechanical components of the cell that provide resistance to deformation stress. Practical experimental problems, including insolubility, lack of good pharmacological antagonists, and the paucity of powerful genetic models have handicapped the research of other functions. In single-layered epithelial cells, keratin intermediate filaments are cortical, either apically polarized or apico-lateral.

View Article and Find Full Text PDF

In simple epithelial cells, attachment of microtubule-organizing centers (MTOCs) to intermediate filaments (IFs) enables their localization to the apical domain. It is released by cyclin-dependent kinase (Cdk)1 phosphorylation. Here, we identified a component of the gamma-tubulin ring complex, gamma-tubulin complex protein (GCP)6, as a keratin partner in yeast two-hybrid assays.

View Article and Find Full Text PDF

Muc4 serves as an intramembrane ligand for the receptor tyrosine kinase ErbB2. The time to complex formation and the stoichiometry of the complex were determined to be <15 min and 1:1 by analyses of Muc4 and ErbB2 coexpressed in insect cells and A375 tumor cells. In polarized CACO-2 cells, Muc4 expression causes relocalization of ErbB2, but not its heterodimerization partner ErbB3, to the apical cell surface, effectively segregating the two receptors.

View Article and Find Full Text PDF

Ezrin connects the apical F-actin scaffold to membrane proteins in the apical brush border of intestinal epithelial cells. Yet, the mechanisms that recruit ezrin to the apical domain remain obscure. Using stable CACO-2 transfectants expressing keratin 8 (K8) antisense RNA under a tetracycline-responsive element, we showed that the actin-ezrin scaffold cannot assemble in the absence of intermediate filaments (IFs).

View Article and Find Full Text PDF

Muc4/Sialomucin complex (SMC) acts as an intramembrane ligand for the receptor tyrosine kinase ErbB2, inducing a limited phosphorylation of the receptor. Because Muc4/SMC is found at the apical surfaces of polarized epithelial cells and ErbB2 is often basolateral, the question arises as to whether these components become associated in polarized cells. To address this question, we examined the localization of these proteins in polarized human colon carcinoma CACO-2 cells.

View Article and Find Full Text PDF

We have previously shown that microtubule-organizing centers (MTOCs) attach to the apical network of intermediate filaments (IFs) in epithelial cells in culture and in epithelia in vivo. Because that attachment is important for the architecture of microtubules (MTs) in epithelia, we analyzed whether chemical anoxia in LLC-PK1 and CACO-2 cells or unilateral ischemia-reperfusion in rat kidney (performed under fluorane anesthesia) had an effect on the binding and distribution of MTOCs. In culture, we found that chemical anoxia induces MTOC detachment from IFs by morphological and biochemical criteria.

View Article and Find Full Text PDF

The cystic fibrosis transmembrane conductance regulator (CFTR) channel is regulated by cAMP-dependent vesicle traffic and exocytosis to the apical membrane in some cell types, but this has not been demonstrated in the intestinal crypt. The distribution of CFTR, lactase (control), and fluid secretion were determined in rat jejunum after cAMP activation in the presence of nocodazole and primaquine to disrupt vesicle traffic. CFTR and lactase were localized by immunofluorescence, and surface proteins were detected by biotinylation of enterocytes.

View Article and Find Full Text PDF

We have shown previously that centrosomes and other microtubule-organizing centers (MTOCs) attach to the apical intermediate filament (IF) network in CACO-2 cells. In this cell line, intermediate filaments do not disorganize during mitosis. Therefore, we speculated that the trigger of the G(2)-M boundary may also detach MTOCs from their IF anchor.

View Article and Find Full Text PDF

The durations of transmembrane action potentials recorded from single myocytes isolated from the endocardial surface of hypertrophied left ventricles of rats were increased, compared to the durations recorded from normal left ventricular cells at 36-37 degrees C. Exposure to phalloidin (1-20 microM, < 20 min), a specific stabilizer of the non-myofibrillar actin microfilament component of the cardiac cytoskeleton, had no effect on action potential duration of normal cells, but significantly shortened the prolonged action potentials of hypertrophied cells. Cytochalasin D (5-50 microM), a disrupter of the actin microfilaments, also had little effect on action potential duration of normal cells.

View Article and Find Full Text PDF

This chapter focuses on protein sorting in the secretory pathway. From primary and secondary biosynthetic sites in the cytosol and mitochondrial matrix, respectively, proteins and lipids are distributed to more than 30 final destinations in membranes or membrane-bound spaces, where they carry out their programmed function. Molecular sorting is defined, in its most general sense, as the sum of the mechanisms that determine the distribution of a given molecule from its site of synthesis to its site of function in the cell.

View Article and Find Full Text PDF