Publications by authors named "Pedro J Beltran"

Approved inhibitors of KRASG12C prevent oncogenic activation by sequestering the inactive, GDP-bound (OFF) form rather than directly binding and inhibiting the active, GTP-bound (ON) form. This approach provides no direct target coverage of the active protein. Expectedly, adaptive resistance to KRASG12C (OFF)-only inhibitors is observed in association with increased expression and activity of KRASG12C(ON).

View Article and Find Full Text PDF

Compromised vascular endothelial barrier function is a salient feature of diabetic complications such as sight-threatening diabetic macular edema (DME). Current standards of care for DME manage aspects of the disease, but require frequent intravitreal administration and are poorly effective in large subsets of patients. Here we provide evidence that an elevated burden of senescent cells in the retina triggers cardinal features of DME pathology and conduct an initial test of senolytic therapy in patients with DME.

View Article and Find Full Text PDF
Article Synopsis
  • Oncogenic KRAS mutants show different biochemical behaviors due to their unique conformations; they exist in two primary states, active (state 2) and inactive (state 1), which are influenced by how they bind to molecules like GTP and GppNHp.
  • Research using P NMR has revealed that KRAS bound to GTP primarily adopts the active state (over 90% in state 2), while GppNHp-bound KRAS shows a significant population in the inactive state 1, a condition likely not seen in living cells.
  • A new small-molecule inhibitor, BBO-8956, has been developed that targets KRAS G12C and disrupts the state 1-state
View Article and Find Full Text PDF
Article Synopsis
  • Chromosomal instability (CIN) is a common feature in aggressive cancers, such as high-grade serous ovarian cancer (HGSOC) and triple-negative breast cancer (TNBC), often linked to TP53 mutations.
  • Researchers discovered that KIF18A motor protein inhibitors can activate the mitotic checkpoint, causing selective death of cancer cells with CIN, especially those with TP53 mutations.
  • These inhibitors demonstrated minimal side effects on normal human bone marrow cells and showed significant tumor regression in HGSOC and TNBC models in mice, suggesting a promising targeted therapy for CIN-associated cancers.
View Article and Find Full Text PDF

Background: Checkpoint inhibitors targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) have demonstrated clinical efficacy in advanced melanoma, but only a subset of patients with inflamed tumors are responsive. Talimogene laherparepvec (T-VEC), a modified herpes simplex virus type 1 (HSV-1) expressing granulocyte-macrophage colony-stimulating factor (GM-CSF), is a first-in-class oncolytic immunotherapy approved for the treatment of melanoma and has been shown to inflame the tumor microenvironment. To evaluate the potential and mechanisms of T-VEC to elicit systemic antitumor immunity and overcome resistance to checkpoint inhibitors in murine tumor models, OncoVEX was developed similarly to T-VEC, except the human GM-CSF transgene was replaced with murine GM-CSF.

View Article and Find Full Text PDF

Similar to insulin, central administration of IGF-1 can suppress hepatic glucose production (HGP), but it is unclear whether this effect is mediated via insulin receptors (InsRs) or IGF-1 receptors (IGF-1Rs) in the brain. To this end, we used pharmacologic and genetic approaches in combination with hyperinsulinemic-euglycemic clamps to decipher the role of these receptors in mediating central effects of IGF-1 and insulin on HGP. In rats, we observed that intracerebroventricular (ICV) administration of IGF-1 or insulin markedly increased the glucose infusion rate (GIR) by >50% and suppressed HGP ( < 0.

View Article and Find Full Text PDF

Attenuating pathological angiogenesis in diseases characterized by neovascularization such as diabetic retinopathy has transformed standards of care. Yet little is known about the molecular signatures discriminating physiological blood vessels from their diseased counterparts, leading to off-target effects of therapy. We demonstrate that in contrast to healthy blood vessels, pathological vessels engage pathways of cellular senescence.

View Article and Find Full Text PDF

Purpose: Small-cell lung cancer (SCLC) is an aggressive neuroendocrine tumor with a high relapse rate, limited therapeutic options, and poor prognosis. We investigated the antitumor activity of AMG 757, a half-life extended bispecific T-cell engager molecule targeting delta-like ligand 3 (DLL3)-a target that is selectively expressed in SCLC tumors, but with minimal normal tissue expression.

Experimental Design: AMG 757 efficacy was evaluated in SCLC cell lines and in orthotopic and patient-derived xenograft (PDX) mouse SCLC models.

View Article and Find Full Text PDF

Diminished growth factor signaling improves longevity in laboratory models, while a reduction in the somatotropic axis is favorably linked to human aging and longevity. Given the conserved role of this pathway on lifespan, therapeutic strategies, such as insulin-like growth factor-1 receptor (IGF-1R) monoclonal antibodies (mAb), represent a promising translational tool to target human aging. To this end, we performed a preclinical study in 18-mo-old male and female mice treated with vehicle or an IGF-1R mAb (L2-Cmu, Amgen Inc), and determined effects on aging outcomes.

View Article and Find Full Text PDF

Talimogene laherparepvec, a new oncolytic immunotherapy, has been recently approved for the treatment of melanoma. Using a murine version of the virus, we characterized local and systemic antitumor immune responses driving efficacy in murine syngeneic models. The activity of talimogene laherparepvec was characterized against melanoma cell lines using an viability assay.

View Article and Find Full Text PDF

Gas6 and its receptors Axl, Mer and Tyro-3 (TAM) are highly expressed in human malignancy suggesting that signaling through this axis may be tumor-promoting. In pancreatic ductal adenocarcinoma (PDAC), Gas6 and the TAM receptor Axl are frequently co-expressed and their co-expression correlates with poor survival. A strategy was devised to generate fully human neutralizing antibodies against Gas6 using XenoMouse® technology.

View Article and Find Full Text PDF

In nonsmall cell lung cancer (NSCLC), the threonine(790)-methionine(790) (T790M) point mutation of EGFR kinase is one of the leading causes of acquired resistance to the first generation tyrosine kinase inhibitors (TKIs), such as gefitinib and erlotinib. Herein, we describe the optimization of a series of 7-oxopyrido[2,3-d]pyrimidinyl-derived irreversible inhibitors of EGFR kinase. This led to the discovery of compound 24 which potently inhibits gefitinib-resistant EGFR(L858R,T790M) with 100-fold selectivity over wild-type EGFR.

View Article and Find Full Text PDF
Article Synopsis
  • - Efforts to enhance the Aurora kinase inhibitor 14a faced challenges, as increased polarity reduced its potency against multidrug-resistant cell lines.
  • - Despite high metabolic clearance in lab tests, the compound 23r (AMG 900) showed good pharmacokinetics and strong pharmacodynamic effects, although translating in vitro results to actual living models (in vivo) was complicated.
  • - 23r emerged as a promising candidate for being the leading Aurora kinase inhibitor, demonstrating effective single-agent activity in early phase 1 studies with support from G-CSF, due to its favorable oral administration and selectivity for Aurora-driven processes.
View Article and Find Full Text PDF

The structure-based design and optimization of a novel series of selective PERK inhibitors are described resulting in the identification of 44 as a potent, highly selective, and orally active tool compound suitable for PERK pathway biology exploration both in vitro and in vivo.

View Article and Find Full Text PDF

Inhibition of the mitogenic insulin-like growth factor receptor 1 (IGF-1R) signaling axis is a compelling treatment strategy for prostate cancer. Combining the IGF-1R inhibitor ganitumab (formerly AMG 479) with standard of care androgen-deprivation therapy greatly delays prostate cancer recurrence in xenograft models; however, a significant proportion of these tumors ultimately acquire resistance to ganitumab. Here we describe the development of a stable and reproducible ganitumab-resistant VCaP human prostate cancer cell derivative termed VCaP/GanR to investigate the mechanism of acquired resistance to IGF-1R inhibition.

View Article and Find Full Text PDF

Purpose: Insulin-like growth factor 1 receptor (IGF-IR) has been implicated in the pathogenesis of ovarian cancer. Ganitumab is an investigational, fully human monoclonal antibody against IGF-IR. Here, we explore the therapeutic potential of ganitumab for the treatment of ovarian cancer.

View Article and Find Full Text PDF

Ganitumab is a fully human MAB to the human type 1 IGF receptor (IGF1R). Binding assays showed that ganitumab recognized murine IGF1R with sub-nanomolar affinity (KD=0.22 nM) and inhibited the interaction of murine IGF1R with IGF1 and IGF2.

View Article and Find Full Text PDF

Calorie restriction (CR) inhibits prostate cancer progression, partially through modulation of the IGF axis. IGF-1 receptor (IGF-1R) blockade reduces prostate cancer xenograft growth. We hypothesized that combining calorie restriction with IGF-1R blockade would have an additive effect on prostate cancer growth.

View Article and Find Full Text PDF

Background: Therapeutic antibodies targeting the IGF1R have shown diverse efficacy and safety signals in oncology clinical trials. The success of these agents as future human therapeutics depends on understanding the specific mechanisms by which these antibodies target IGF1R signaling.

Methodology/principal Findings: A panel of well-characterized assays was used to investigate the mechanisms by which ganitumab, a fully human anti-IGF1R antibody undergoing clinical testing, inhibits IGF1R activity.

View Article and Find Full Text PDF

Prostate cancer is the most commonly diagnosed malignancy in men. While tumors initially respond to androgen-deprivation therapy, the standard care for advanced or metastatic disease, tumors eventually recur as castration-resistant prostate cancer (CRPC). Upregulation of the insulin-like growth factor receptor type I (IGF-IR) signaling axis drives growth and progression of prostate cancer by promoting proliferation, survival, and angiogenesis.

View Article and Find Full Text PDF

In preclinical models, both dietary fat reduction and insulin-like growth factor I receptor (IGF-1R) blockade individually inhibit prostate cancer xenograft growth. We hypothesized that a low-fat diet combined with IGF-1R blockade would cause additive inhibition of prostate cancer growth and offset possible untoward metabolic effects of IGF-1R blockade antibody therapy. Fifty severe combined immunodeficient mice were injected with 22Rv1 cells subcutaneously.

View Article and Find Full Text PDF

Ewing's and osteogenic sarcoma are two of the leading causes of cancer deaths in children and adolescents. Recent data suggest that sarcomas may depend on the insulin-like growth factor type 1 (IGF-1) receptor (IGF1R) and/or the insulin receptor (INSR) to drive tumor growth, survival, and resistance to mammalian target of rapamycin complex 1 (mTORC1) inhibitors. We evaluated the therapeutic value of ganitumab (AMG 479; C(6472)H(10028)N(1728)O(2020)S(42)), an anti-IGF1R, fully human monoclonal antibody, alone and in combination with rapamycin (mTORC1 inhibitor) in Ewing's (SK-ES-1 and A673) and osteogenic (SJSA-1) sarcoma models.

View Article and Find Full Text PDF

Raf inhibitors are under clinical investigation, specifically in patients with tumor types harboring frequent activating mutations in B-Raf. Here, we show that cell lines and tumors harboring mutant B-Raf were sensitive to a novel series of Raf inhibitors (e.g.

View Article and Find Full Text PDF

Receptor-protein tyrosine phosphatases (RPTPs), like receptor tyrosine kinases, regulate neuronal differentiation. While receptor tyrosine kinases are dimerized and activated by extracellular ligands, the extent to which RPTPs dimerize, and the effects of dimerization on phosphatase activity, are poorly understood. We have examined a neuronal type III RPTP, PTPRO; we find that PTPRO can form dimers in living cells, and that disulfide linkages in PTPROs intracellular domain likely regulate dimerization.

View Article and Find Full Text PDF

Pancreatic carcinoma is a leading cause of cancer deaths, and recent clinical trials of a number of oncology therapeutics have not substantially improved clinical outcomes. We have evaluated the therapeutic potential of AMG 479, a fully human monoclonal antibody against insulin-like growth factor (IGF) type I receptor (IGF-IR), in two IGF-IR-expressing pancreatic carcinoma cell lines, BxPC-3 and MiaPaCa2, which also differentially express insulin receptor (INSR). AMG 479 bound to IGF-IR (K(D) 0.

View Article and Find Full Text PDF