Publications by authors named "Pedro Hernandez Martinez"

The strength of electrostatic interactions (EIs) between electrons and holes within semiconductor nanocrystals profoundly affects the performance of their optoelectronic systems, and different optoelectronic devices demand distinct EI strength of the active medium. However, achieving a broad range and fine-tuning of the EI strength for specific optoelectronic applications is a daunting challenge, especially in quasi two-dimensional core-shell semiconductor nanoplatelets (NPLs), as the epitaxial growth of the inorganic shell along the direction of the thickness that solely contributes to the quantum confined effect significantly undermines the strength of the EI. Herein we propose and demonstrate a doubly gradient (DG) core-shell architecture of semiconductor NPLs for on-demand tailoring of the EI strength by controlling the localized exciton concentration via in-plane architectural modulation, demonstrated by a wide tuning of radiative recombination rate and exciton binding energy.

View Article and Find Full Text PDF

Allergic rhinitis (AR) has considerable impact on the general health of individuals. Therefore, treatment trials should include an evaluation of quality of life. We aimed to determine changes in the quality of life of moderate/severe AR patients treated with standard treatment in addition to dialyzable leukocyte extract (DLE), a peptide-based immunomodulator.

View Article and Find Full Text PDF

Solution-processed two-dimensional nanoplatelets (NPLs) allowing lateral growth of a shell (crown) by not affecting the pure confinement in the vertical direction provide unprecedented opportunities for designing heterostructures for light-emitting and -harvesting applications. Here, we present a pathway for designing and synthesizing colloidal type-II core/(multi-)crown hetero-NPLs and investigate their optical properties. Stoke's shifted broad photoluminescence (PL) emission and long PL lifetime (∼few 100 ns) together with our wavefunction calculations confirm the type-II electronic structure in the synthesized CdS/CdSeTe core/crown hetero-NPLs.

View Article and Find Full Text PDF

Colloidal quantum wells (CQWs), also known as nanoplatelets (NPLs), are exciting material systems for numerous photonic applications, including lasers and light-emitting diodes (LEDs). Although many successful type-I NPL-LEDs with high device performance have been demonstrated, type-II NPLs are not fully exploited for LED applications, even with alloyed type-II NPLs with enhanced optical properties. Here, we present the development of CdSe/CdTe/CdSe core/crown/crown (multi-crowned) type-II NPLs and systematic investigation of their optical properties, including their comparison with the traditional core/crown counterparts.

View Article and Find Full Text PDF

Silicon is the most prevalent material system for light-harvesting applications; however, its inherent indirect bandgap and consequent weak absorption limits its potential in optoelectronics. This paper proposes to address this limitation by combining the sensitization of silicon with extraordinarily large absorption cross sections of quasi-2D colloidal quantum well nanoplatelets (NPLs) and to demonstrate excitation transfer from these NPLs to bulk silicon. Here, the distance dependency, d, of the resulting Förster resonant energy transfer from the NPL monolayer into a silicon substrate is systematically studied by tuning the thickness of a spacer layer (of Al O ) in between them (varied from 1 to 50 nm in thickness).

View Article and Find Full Text PDF

In this work, we systematically studied the shape- and size-controlled monodisperse synthesis of iron oxide nanocrystals (IONCs) for their use as building blocks in the formation of mesocrystals. For this aim, on understanding the influence of the oleic acid concentration, iron-oleate concentration, and heating rate on the synthesis of robust and reproducible IONCs with desired sizes and shapes, we synthesized highly monodisperse ∼11 nm sized nanocubes and nanospheres. Magnetic measurements of both cubic and spherical IONCs revealed the presence of mixed paramagnetic and superparamagnetic phases in these nanocrystals.

View Article and Find Full Text PDF

van der Waals two-dimensional layered heterostructures have recently emerged as a platform, where the interlayer couplings give rise to interesting physics and multifunctionalities in optoelectronics. Such couplings can be rationally controlled by dielectric, separation, and stacking angles, which affect the overall charge or energy-transfer processes, and emergent potential landscape for twistronics. Herein, we report the efficient Förster resonance energy transfer (FRET) in WS/hBN/MoSe heterostructure, probed by both steady-state and time-resolved optical spectroscopy.

View Article and Find Full Text PDF

Colloidal quantum dots (CQDs) are highly promising materials for light amplification thanks to their efficient photoluminescence, tunable emission wavelength and low-cost synthesis. Unfortunately, CQDs are suffering from band-edge state degeneracy which demands multiple excitons to achieve population inversion. As a result, non-radiative Auger recombination increases the lasing threshold and limits the gain lifetime.

View Article and Find Full Text PDF

The incorporation of magnetic impurities into semiconductor nanocrystals with size confinement promotes enhanced spin exchange interaction between photogenerated carriers and the guest spins. This interaction stimulates new magneto-optical properties with significant advantages for emerging spin-based technologies. Here we observe and elaborate on carrier-guest interactions in magnetically doped colloidal nanoplatelets with the chemical formula CdSe/CdMnS, explored by optically detected magnetic resonance and magneto-photoluminescence spectroscopy.

View Article and Find Full Text PDF

Colloidal semiconductor nanoplatelets (NPLs) are highly promising luminescent materials owing to their exceptionally narrow emission spectra. While high-efficiency NPLs in non-polar organic media can be obtained readily, NPLs in aqueous media suffer from extremely low quantum yields (QYs), which completely undermines their potential, especially in biological applications. Here, we show high-efficiency water-soluble CdSe/CdS@Cd1-xZnxS core/crown@shell NPLs formed by layer-by-layer grown and composition-tuned gradient Cd1-xZnxS shells on CdSe/CdS core/crown seeds.

View Article and Find Full Text PDF

A hybrid structure of the quasi-2D colloidal semiconductor quantum wells assembled with a single layer of 2D transition metal dichalcogenides offers the possibility of highly strong dipole-to-dipole coupling, which may enable extraordinary levels of efficiency in Förster resonance energy transfer (FRET). Here, we show ultrahigh-efficiency FRET from the ensemble thin films of CdSe/CdS nanoplatelets (NPLs) to a MoS monolayer. From time-resolved fluorescence spectroscopy, we observed the suppression of the photoluminescence of the NPLs corresponding to the total rate of energy transfer from ∼0.

View Article and Find Full Text PDF

In two-dimensional (2D) colloidal semiconductor nanoplatelets, which are atomically flat nanocrystals, the precise control of thickness and composition on the atomic scale allows for the synthesis of heterostructures with well-defined electron and hole wave function distributions. Introducing transition metal dopants with a monolayer precision enables tailored magnetic exchange interactions between dopants and band states. Here, we use the absorption based technique of magnetic circular dichroism (MCD) to directly prove the exchange coupling of magnetic dopants with the band charge carriers in hetero-nanoplatelets with CdSe core and manganese-doped CdS shell (CdSe/Mn:CdS).

View Article and Find Full Text PDF

Förster resonance energy transfer (FRET) interacted with localized surface plasmon (LSP) gives us the ability to overcome inadequate transfer of energy between donor and acceptor nanocrystals (NCs). In this paper, we show LSP-enhanced FRET in colloidal photosensors of NCs in operation, resulting in substantially enhanced photosensitivity. The proposed photosensitive device is a layered self-assembled colloidal platform consisting of separated monolayers of the donor and the acceptor colloidal NCs with an intermediate metal nanoparticle (MNP) layer made of gold interspaced by polyelectrolyte layers.

View Article and Find Full Text PDF

Surface plasmon (SP) coupling has been successfully applied to nonradiative energy transfer via exciton-plasmon-exciton coupling in conventionally sandwiched donor-metal film-acceptor configurations. However, these structures lack the desired efficiency and suffer poor photoemission due to the high energy loss. Here, we show that the cascaded exciton-plasmon-plasmon-exciton coupling in stratified architecture enables an efficient energy transfer mechanism.

View Article and Find Full Text PDF

Here we report CdSe nanoplatelets that are incorporated into color-converting CdSe/ZnS nanocrystals for InGaN/GaN light-emitting diodes. The critical role of CdSe nanoplatelets as an exciton donor for the color conversion was experimentally investigated. The power conversion efficiency of the hybrid light-emitting diode was found to increase by 23% with the incorporation of the CdSe nanoplatelets.

View Article and Find Full Text PDF

In this work, we report the manifestations of carrier-dopant exchange interactions in colloidal Mn(2+)-doped CdSe/CdS core/multishell quantum wells. The carrier-magnetic ion exchange interaction effects are tunable through wave function engineering. In our quantum well heterostructures, manganese was incorporated by growing a Cd0.

View Article and Find Full Text PDF

In this work, centimeter-scale macrocrystals of nonpolar colloidal quantum dots (QDs) incorporated into anthracene were grown for the first time. The exciton transfer from the anthracene host to acceptor QDs was systematically investigated, and anisotropic emission from the isotropic QDs in the anthracene macrocrystals was discovered. Results showed a decreasing photoluminescence lifetime of the donor anthracene, indicating a strengthening energy transfer with increasing QD concentration in the macrocrystals.

View Article and Find Full Text PDF

Nanocomposites of colloidal quantum dots (QDs) integrated into conjugated polymers (CPs) are key to hybrid optoelectronics, where engineering the excitonic interactions at the nanoscale is crucial. For such excitonic operation, it was believed that exciton diffusion is essential to realize nonradiative energy transfer from CPs to QDs. In this study, contrary to the previous literature, efficient exciton transfer is demonstrated in the nanocomposites of dense QDs, where exciton transfer can be as efficient as 80% without requiring the assistance of exciton diffusion.

View Article and Find Full Text PDF

CTAB-coated Au nanorods were directly self-assembled into a vertically aligned monolayer with highly uniform hot spots through a simple but robust approach. By coupling with CdSe/ZnS quantum dots, a maximum enhancement of 10.4 is achieved due to: increased excitation transition rate, radiative rate, and coupling efficiency of emission to the far field.

View Article and Find Full Text PDF

We study phonon-assisted Förster resonance energy transfer (FRET) into an indirect band-gap semiconductor using nanoemitters. The unusual temperature dependence of this energy transfer, which is measured using the donor nanoemitters of quantum dot (QD) layers integrated on the acceptor monocrystalline bulk silicon as a model system, is predicted by a phonon-assisted exciton transfer model proposed here. The model includes the phonon-mediated optical properties of silicon, while considering the contribution from the multimonolayer-equivalent QD film to the nonradiative energy transfer, which is derived with a d(-3) distance dependence.

View Article and Find Full Text PDF

Utilization of light is crucial for the life cycle of many organisms. Also, many organisms can create light by utilizing chemical energy emerged from biochemical reactions. Being the most important structural units of the organisms, proteins play a vital role in the formation of light in the form of bioluminescence.

View Article and Find Full Text PDF

We report selectively plasmon-mediated nonradiative energy transfer between quantum dot (QD) emitters interacting with each other via Förster-type resonance energy transfer (FRET) under controlled plasmon coupling either to only the donor QDs (i.e., donor-selective) or to only the acceptor QDs (i.

View Article and Find Full Text PDF

In nanocrystal quantum dots (NQDs), generating multiexcitons offers an enabling tool for enhancing NQD-based devices. However, the photocharging effect makes understanding multiexciton kinetics in NQD solids fundamentally challenging, which is critically important for solid-state devices. To date, this lack of understanding and the spectral-temporal aspects of the multiexciton recombination still remain unresolved in solid NQD ensembles, which is mainly due to the confusion with recombination of carriers in charged NQDs.

View Article and Find Full Text PDF

For many years, application of RBC indices has been recommended for discriminating between subjects with iron deficiency from those with thalassemia. However, application of the algorithms resulted in only 30% to 40% of subjects being appropriately classified. The aim of the study was to establish the efficacy of algorithms for anemia screening including new hematologic parameters such as percentage of hypochromic and microcytic RBCs and hemoglobin content of reticulocytes.

View Article and Find Full Text PDF

We propose and demonstrate the fabrication of flexible, freestanding films of InP/ZnS quantum dots (QDs) using fatty acid ligands across very large areas (greater than 50 cm × 50 cm), which have been developed for remote phosphor applications in solid-state lighting. Embedded in a poly(methyl methacrylate) matrix, although the formation of stand-alone films using other QDs commonly capped with trioctylphosphine oxide (TOPO) and oleic acid is not efficient, employing myristic acid as ligand in the synthesis of these QDs, which imparts a strongly hydrophobic character to the thin film, enables film formation and ease of removal even on surprisingly large areas, thereby avoiding the need for ligand exchange. When pumped by a blue LED, these Cd-free QD films allow for high color rendering, warm white light generation with a color rendering index of 89.

View Article and Find Full Text PDF