Purpose: In case of need for esthetical improvement of zirconia restorations, an individualization using extrinsic staining can be applied. This study aimed to evaluate the surface roughness and fatigue strength (survival) of high-translucency zirconia (3Y-TZP, YZ®HT, Vita Zanhfabrik) with extrinsic characterization and/or glaze.
Methods: Sixty (60) zirconia discs (12 × 1.
Purpose: To evaluate the effect of plasma-enhanced chemical vapor deposition (PECVD) with silicon hydride (SiH4) at different times on HT-zirconia surface characteristics and bonding of composite cement before and after thermocycling.
Materials And Methods: Blocks of HT zirconia were obtained, polished, sintered and divided into five groups, according to PECVD time (n = 31): Zr-30 (30 s), Zr-60 (60 s), Zr-120 (120 s) and Zr-300 (300 s). The control group (Zr-0) did not receive PECVD.
Objectives: This study aimed to evaluate the impact of mechanical fatigue cycling using the step-stress approach along with hydrothermaldegradation (134 ºC with a constant pressure of 2 bars for 20 h), and a novel intercalated hydrothermal/fatigue aging protocol on different aspects of the aging resistance of three generations of dental zirconias.
Methods: "Y"Z T (VITA), INCORIS "T"ZI (Dentsply Sirona) and "K"ATANA UTML (Noritake Kuraray) - 1st, 2nd and 3rd generation, respectively-, zirconia disks (N = 153), were divided into 6 groups (n = 3) for monotonic testing and 9 groups (n = 15) for mechanical fatigue testing, according to 3 proposed treatments for each zirconia: CF (control - only mechanical fatigue cycling); AF (aging in hydrothermal reactor at 134 °C for 20 h + mechanical fatigue cycling); AFA (Alternating protocol: 4 steps of 5 h of hydrothermal aging intercalated with mechanical fatigue cycling). Mechanical fatigue aging was performed according to the step-stress approach through biaxial flexural setup (piston-on-3-balls, initial strength: 100 MPa, step: 50 MPa/10,000, frequency: 20 Hz) until failure.
J Mech Behav Biomed Mater
October 2020
This study evaluated the effect of different firing processes (without firing, additional crystallization and glaze firing) and thermal-cycling (with or without) on the fatigue behavior of simplified zirconia-lithium silicate (ZLS) glass ceramic restorations cemented to a dentin-like material. Materials and Methods. One hundred twenty-nine (129) discs (diameter = 12 mm and thickness = 1.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
February 2020
This study aimed to evaluate the effects of low temperature degradation (LTD) on commercial dental zirconias (conventional and high-translucent - HT) with different microstructures, as well as on their mechanical properties and t-m phase transformation. The amount of monoclinic zirconia in different depths was quantified using X-ray diffraction (XRD) with different anode tubes (Cr, Co and Cu). XRD was also used to measure the residual stress of the materials at 0 h, 26 h and 140 h aging times.
View Article and Find Full Text PDFPurpose: To evaluate the effect of different firing stages (without firing, additional crystallization and glaze firings), hydrofluoric acid (HF) concentrations (5% and 10%), and thermocycling on the bond strength between resin cement and a zirconia-lithium silicate (ZLS) ceramic.
Materials And Methods: ZLS ceramic (Celtra Duo, Dentsply Sirona) blocks were cut into smaller blocks and divided into 12 groups (N = 72), according to the HF concentration used, firing stage, and thermocycling (n = 6). All specimens were silanized (Monobond N, Ivoclar) and cemented with resin cement (Multilink N, Ivoclar) onto blocks of composite resin (Filtek Z250 XT, 3M).
Objectives: The purpose of the study was to characterize the microstructure, constituents, and mechanical properties of mono and bilayered zirconia specimens infiltrated with silica by the sol gel method.
Methods: 180 zirconia discs (14-mm diameter) were divided in 3 groups (n = 60) according to thickness (1.2, 0.