Publications by authors named "Pedro H S Pereira"

Mutations of receptor tyrosine kinases (RTKs) are associated with the development of many cancers by modifying receptor signaling and contributing to drug resistance in clinical settings. We present enhanced bystander bioluminescence resonance energy transfer-based biosensors providing new insights into RTK biology and pharmacology critical for the development of more effective RTK-targeting drugs. Distinct SH2-specific effector biosensors allow for real-time and spatiotemporal monitoring of signal transduction pathways engaged upon RTK activation.

View Article and Find Full Text PDF

Throughout evolution, the need for single-celled organisms to associate and form a single cluster of cells has had several evolutionary advantages. In complex, multicellular organisms, each tissue or organ has a specialty and function that make life together possible, and the organism as a whole needs to act in balance and adapt to changes in the environment. Sensory organs are essential for connecting external stimuli into a biological response, through the senses: sight, smell, taste, hearing, and touch.

View Article and Find Full Text PDF

Throughout evolution the need for unicellular organisms to associate and form a single cluster of cells had several evolutionary advantages. G protein coupled receptors (GPCRs) are responsible for a large part of the senses that allow this clustering to succeed, playing a fundamental role in the perception of cell's external environment, enabling the interaction and coordinated development between each cell of a multicellular organism. GPCRs are not exclusive to complex multicellular organisms.

View Article and Find Full Text PDF

Half of the world's population lives in countries at risk of malaria infection, which results in approximately 450,000 deaths annually. Malaria parasites infect erythrocytes in a coordinated manner, with cycle durations in multiples of 24 hours, which reflects a behavior consistent with the host's circadian cycle. Interference in cycle coordination can help the immune system to naturally fight infection.

View Article and Find Full Text PDF

The nucleotides were discovered in the early 19th century and a few years later, the role of such molecules in energy metabolism and cell survival was postulated. In 1972, a pioneer work by Burnstock and colleagues suggested that ATP could also work as a neurotransmitter, which was known as the "purinergic hypothesis". The idea of ATP working as a signaling molecule faced initial resistance until the discovery of the receptors for ATP and other nucleotides, called purinergic receptors.

View Article and Find Full Text PDF

Parasites of Plasmodium genus are responsible for causing malaria in humans. Resistant strains to all available antimalarials can be found in several locations around the globe, including parasites resistant to the latest generation of combination drugs, such as piperaquine + artemisinin. Plasmodium develops between two completely different hosts such as a vertebrate one and the mosquito vector, thus it has the ability to adapt to very extreme and different environments.

View Article and Find Full Text PDF

We molecularly characterized a new mutation in the GmFAD3A gene associated with low linolenic content in the Brazilian soybean cultivar CS303TNKCA and developed a molecular marker to select this mutation. Soybean is one of the most important crops cultivated worldwide. Soybean oil has 13% palmitic acid, 4% stearic acid, 20% oleic acid, 55% linoleic acid and 8% linolenic acid.

View Article and Find Full Text PDF

Background: Phosphoinositides (PIs) and their derivatives are essential cellular components that form the building blocks for cell membranes and regulate numerous cell functions. Specifically, the ability to generate myo-inositol 1,4,5-trisphosphate (InsP3) via phospholipase C (PLC) dependent hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) to InsP3 and diacylglycerol (DAG) initiates intracellular calcium signaling events representing a fundamental signaling mechanism dependent on PIs. InsP3 produced by PI turnover as a second messenger causes intracellular calcium release, especially from endoplasmic reticulum, by binding to the InsP3 receptor (InsP3R).

View Article and Find Full Text PDF