In the rat, administration of tamoxifen (TX) in the absence of oestrogen (E) induces LHRH self-priming, the progesterone receptor (PR)-dependent property of LHRH that increases gonadotrope responsiveness to itself. The oestrogen-dependent PR can be phosphorylated/activated by progesterone (P4) and, in the absence of the cognate ligand, by intracellular LHRH signals, particularly cAMP/protein kinase A. We have recently found that oestradiol-17beta (E2), acting on a putative membrane estrogen receptor-alpha in the gonadotrope, inhibits this agonist action of TX.
View Article and Find Full Text PDFHypothalamic luteinizing hormone-releasing hormone neurons (LHRH) form the final pathway for the central control of reproduction through the release of LHRH into the pituitary-hypothalamic system. We previously found that LHRH-producing GT1-7 cells respond to acetylcholine (ACh) with an increase in intracellular calcium ([Ca2+]i) through activation of muscarinic receptors. This effect is acutely modulated by 17beta-estradiol in a manner compatible with specific membrane binding sites.
View Article and Find Full Text PDFSelective estrogen receptor modulators (SERMs) are compounds which may function as agonists or antagonists depending upon the target tissue. This study compares the actions of different SERMs on luteinizing hormone (LH) secretion, and on gonadotropin-releasing hormone (GnRH) self-priming in the rat. To do this, 4-day cyclic rats were injected twice, on day 2 (metestrus) and day 3 of the estrous cycle, with one of the following SERMs: 0.
View Article and Find Full Text PDF