The salamander axolotl is capable of complete regeneration of amputated heart tissue. However, non-invasive imaging tools for assessing its cardiac function were so far not employed. In this study, cardiac magnetic resonance imaging is introduced as a non-invasive technique to image heart function of axolotls.
View Article and Find Full Text PDFPurpose: Imaging of patient anatomy during treatment is a necessity for position verification and for adaptive radiotherapy based on daily dose recalculation. Ultrasound (US) image guided radiotherapy systems are currently available to collect US images at the simulation stage (USsim), coregistered with the simulation computed tomography (CT), and during all treatment fractions. The authors hypothesize that a deformation field derived from US-based deformable image registration can be used to create a daily pseudo-CT (CTps) image that is more representative of the patients' geometry during treatment than the CT acquired at simulation stage (CTsim).
View Article and Find Full Text PDFBone is one of the most common metastatic target sites in breast cancer, with more than 200 thousand new cases of invasive cancer diagnosed in the US alone in 2011. We set out to establish a multimodality imaging platform for bone metastases in small animals as a tool to non-invasively quantify metastasis growth, imaging the ensuing bone lesions and possibly the response to treatment. To this end, a mouse model of osteolytic metastatic bone tumors was characterized with SPECT/CT and MRI over time.
View Article and Find Full Text PDFLocalized gene delivery has many potential clinical applications. However, the nucleic acids (e.g.
View Article and Find Full Text PDFDrugs need to overcome several biological barriers such as the endothelium and cellular membranes in order to reach their target. Promising new therapeutics, many of which are charged and macromolecular, are not able to passively extravasate, let alone cross cell membranes, and stay mainly in the blood pool upon intravenous injection until clearance. Using focused ultrasound (fUS) in combination with circulating microbubbles (MBs) leads to temporary localized tissue permeabilization allowing extravasation of (macro) molecules from the vascular system.
View Article and Find Full Text PDFThe integration of therapeutic interventions with diagnostic imaging has been recognized as one of the next technological developments that will have a major impact on medical treatments. Therapeutic applications using ultrasound, for example thermal ablation, hyperthermia or ultrasound-induced drug delivery, are examples for image-guided interventions that are currently being investigated. While thermal ablation using magnetic resonance-guided high-intensity focused ultrasound is entering the clinic, ultrasound-mediated drug delivery is still in a research phase, but holds promise to enable new applications in localized treatments.
View Article and Find Full Text PDF