Malaria is a devastating infectious disease that affects large swathes of human populations across the planet's tropical regions. It is caused by parasites of the genus Plasmodium, with being responsible for the most lethal form of the disease. During the intraerythrocytic stage in the human hosts, malaria parasites multiply and degrade hemoglobin (Hb) using a battery of proteases, which include two cysteine proteases, falcipains 2 and 3 (FP-2 and FP-3).
View Article and Find Full Text PDFOver 110 years after the first formal description of Chagas disease, the trypanocidal drugs thus far available have limited efficacy and several side effects. This encourages the search for novel treatments that inhibit T. cruzi targets.
View Article and Find Full Text PDFHow are ions distributed in the three-dimensional (3D) volume confined in a nanoscale compartment? Regulation of ionic flow in the intracellular milieu has been explained by different theoretical models and experimentally demonstrated for several compartments with microscale dimensions. Most of these models predict a homogeneous distribution of ions seconds or milliseconds after an initial diffusion step formed at the ion translocation site, leaving open questions when it comes to ion/element distribution in spaces/compartments with nanoscale dimensions. Due to the influence of compartment size on the regulation of ionic flow, theoretical variations of classical models have been proposed, suggesting heterogeneous distributions of ions/elements within nanoscale compartments.
View Article and Find Full Text PDFStaphylococcal exfoliative toxins (ETs) are glutamyl endopeptidases that specifically cleave the Glu381-Gly382 bond in the ectodomains of desmoglein 1 (Dsg1) via complex action mechanisms. To date, four ETs have been identified in different strains and ETE is the most recently characterized. The unusual properties of ETs have been attributed to a unique structural feature, i.
View Article and Find Full Text PDFThe melanocortin-1 receptor (MC1R) is one of the key proteins involved in the regulation of melanin production and several polymorphisms have been associated with different phenotypes of skin and hair color in human and nonhuman species. Most of the knowledge is centered on more homogeneous populations and studies involving an admixed group of people should be encouraged due to the great importance of understanding the human color variation. This work evaluates the MC1R diversity and the possible impacts of MC1R variants in an admixed sample population of Rio de Janeiro, Brazil, which is a product of Native American, African, and European miscegenation.
View Article and Find Full Text PDFFalcipain-2 (FP-2) is a Plasmodium falciparum hemoglobinase widely targeted in the search for antimalarials. FP-2 can be allosterically modulated by various noncompetitive inhibitors that have been serendipitously identified. Moreover, the crystal structures of two inhibitors bound to an allosteric site, termed site 6, of the homolog enzyme human cathepsin K (hCatK) suggest that the equivalent region in FP-2 might play a similar role.
View Article and Find Full Text PDFThe lipid mediators, platelet-activating factor (PAF) and lysophosphatidylcholine (LPC), play relevant pathophysiological roles in Trypanosoma cruzi infection. Several species of LPC, including C18:1 LPC, which mimics the effects of PAF, are synthesized by T. cruzi.
View Article and Find Full Text PDFDuring their life cycle, parasites display a fine-tuned regulation of the mRNA translation through the differential expression of isoforms of eukaryotic translation initiation factor 4E (LeishIF4Es). The interaction between allosteric modulators such as 4E-interacting proteins (4E-IPs) and LeishIF4E affects the affinity of this initiation factor for the mRNA cap. Here, several computational approaches were employed to elucidate the molecular bases of the previously-reported allosteric modulation in exerted by 4E-IP1 (Lm4E-IP1) on eukaryotic translation initiation factor 4E 1 (LmIF4E-1).
View Article and Find Full Text PDFProbing protein surfaces to accurately predict the binding site and conformation of a small molecule is a challenge currently addressed through mainly two different approaches: blind docking and cavity detection-guided docking. Although cavity detection-guided blind docking has yielded high success rates, it is less practical when a large number of molecules must be screened against many detected binding sites. On the other hand, blind docking allows for simultaneous search of the whole protein surface, which however entails the loss of accuracy and speed.
View Article and Find Full Text PDFFalcipain-2 (FP-2) is hemoglobinase considered an attractive drug target of . Recently, it has been shown that peptidomimetic nitriles containing a 3-pyridyl (3Pyr) moiety at P2 display high affinity and selectivity for FP-2 with respect to human cysteine cathepsins (hCats), outperforming other P2-Pyr isomers and analogs. Further characterization demonstrated that certain P3 variants of these compounds possess micromolar inhibition of parasite growth and no cytotoxicity against human cell lines.
View Article and Find Full Text PDFCurrently Alzheimer's disease (AD) is a devastating neurological disorder that mainly affects the elderly. The treatment of AD has as main objective to increase the levels of ACh in the synaptic cleft by inhibiting the cholinesterase enzymes, which are responsible for the degradation of ACh. Twenty one synthesized coumarins and neoflavanones (4-arylcoumarins) and theoretical studies were used to select the most promising ligands for in vitro experimental studies by Nuclear Magnetic Resonance.
View Article and Find Full Text PDFBiochim Biophys Acta Proteins Proteom
August 2020
Lunasin is a 43-amino acid peptide from seeds and grains with bioavailability in humans and potent chemotherapeutic action against several cancer cell lines. Here, we investigate new information about the physicochemical and structural properties of lunasin using circular dichroism (CD), fluorescence spectroscopy, electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS), size exclusion chromatography (SEC), molecular dynamics (MD), and bioinformatics. CD analysis and disorder prediction obtained by PONDR indicate that lunasin has a mostly unordered structure.
View Article and Find Full Text PDFd1 is a pea plant defensin which can be actively expressed in and shows broad antifungal activity. This activity is dependent on fungal membrane glucosylceramide (GlcCer), which is also important for its internalization, nuclear localization, and endoreduplication. Certain cancer cells present a lipid metabolism imbalance resulting in the overexpression of GlcCer in their membrane.
View Article and Find Full Text PDFFalcipain-2 (FP-2) is a cysteine protease that has been extensively targeted to identify novel antimalarials. Remarkably, previous reports have shown that FP-2 can be allosterically modulated and, for a particular noncompetitive chalcone inhibitor, the existing lines of experimental evidence can guide the prediction of its unknown binding mode to the enzyme in a reliable fashion. In this work, we propose a structure of FP-2 in complex with the aforementioned compound that fulfills all of the experimental data, by employing a combination of molecular modeling tools, such as pocket volume measurements, docking, molecular dynamics (MD) simulations, and free energy calculations.
View Article and Find Full Text PDFTrypanosoma cruzi is the causative agent of Chagas disease, a neglected infection affecting millions of people in tropical regions. There are several chemotherapeutic agents for the treatment of this disease, but most of them are highly toxic and generate resistance. Currently, the development of allosteric inhibitors constitutes a promising research field, since it can improve the accessibility to more selective and less toxic medicines.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
December 2018
Background: Falcipain 2 (FP-2) is the hemoglobin-degrading cysteine protease of Plasmodium falciparum most extensively targeted to develop novel antimalarials. However, no commercial antimalarial drugs based on FP-2 inhibition are available yet due to the low selectivity of most FP-2 inhibitors against the human cysteine proteases.
Methods: A structure-based virtual screening (SVBS) using Maybridge HitFinder™ compound database was conducted to identify potential FP-2 inhibitors.
Falcipain-2 (FP-2) is a major hemoglobinase of Plasmodium falciparum, considered an important drug target for the development of antimalarials. A previous study reported a novel series of 20 reversible peptide-based inhibitors of FP-2. However, the lack of tridimensional structures of the complexes hinders further optimization strategies to enhance the inhibitory activity of the compounds.
View Article and Find Full Text PDFBackground: Malaria persists as a major public health problem. Atovaquone is a drug that inhibits the respiratory chain of Plasmodium falciparum, but with serious limitations like known resistance, low bioavailability and high plasma protein binding.
Objectives: The aim of this work was to perform molecular modelling studies of 2-hydroxy-1,4-naphthoquinones analogues of atovaquone on the Qo site of P.
The data described here supports the research article "Unraveling HIV Protease Flaps Dynamics by Constant pH Molecular Dynamics Simulations" (Soares et al., 2016) [1]. The data involves both standard Molecular Dynamics (MD) and Constant pH Molecular Dynamics (CpHMD) to elucidate the effect of protonation states of catalytic dyad on the HIV-PR conformation.
View Article and Find Full Text PDFThe active site of HIV protease (HIV-PR) is covered by two flaps. These flaps are known to be essential for the catalytic activity of the HIV-PR, but their exact conformations at the different stages of the enzymatic pathway remain subject to debate. Understanding the correct functional dynamics of the flaps might aid the development of new HIV-PR inhibitors.
View Article and Find Full Text PDFPLoS Negl Trop Dis
May 2015
Background: Fasciola hepatica is the causative agent of fascioliasis, a disease affecting grazing animals, causing economic losses in global agriculture and currently being an important human zoonosis. Overuse of chemotherapeutics against fascioliasis has increased the populations of drug resistant parasites. F.
View Article and Find Full Text PDFDuring the erythrocytic cycle of Plasmodium falciparum malaria parasites break down host hemoglobin, resulting in the release of free heme (ferriprotoporphyrin IX). Heme is a generator of free radicals that cause oxidative stress, but it is detoxified by crystallization into hemozoin inside the food vacuole. We evaluated the interaction of heme and heme analogues with falcipain-2, a P.
View Article and Find Full Text PDFBackground: Over the last decades, a vast structural knowledge has been gathered on the HIV-1 protease (PR). Noticeably, most of the studies focused the B-subtype, which has the highest prevalence in developed countries. Accordingly, currently available anti-HIV drugs target this subtype, with considerable benefits for the corresponding patients.
View Article and Find Full Text PDF