Publications by authors named "Pedro Fontanarrosa"

The design-build-test-learn workflow is pivotal in synthetic biology as it seeks to broaden access to diverse levels of expertise and enhance circuit complexity through recent advancements in automation. The design of complex circuits depends on developing precise models and parameter values for predicting the circuit performance and noise resilience. However, obtaining characterized parameters under diverse experimental conditions is a significant challenge, often requiring substantial time, funding, and expertise.

View Article and Find Full Text PDF

Over the past 2 decades, synthetic biology has yielded ever more complex genetic circuits that are able to perform sophisticated functions in response to specific signals. Yet, genetic circuits are not immediately transferable to an outside-the-lab setting where their performance is highly compromised. We propose introducing a broader test step to the design-build-test-learn workflow to include factors that might contribute to unexpected genetic circuit performance.

View Article and Find Full Text PDF

Computational tools addressing various components of design-build-test-learn (DBTL) loops for the construction of synthetic genetic networks exist but do not generally cover the entire DBTL loop. This manuscript introduces an end-to-end sequence of tools that together form a DBTL loop called Design Assemble Round Trip (DART). DART provides rational selection and refinement of genetic parts to construct and test a circuit.

View Article and Find Full Text PDF

Synthetic biology research has led to the development of many software tools for designing, constructing, editing, simulating, and sharing genetic parts and circuits. Among these tools are SBOLCanvas, iBioSim, and SynBioHub, which can be used in conjunction to create a genetic circuit design following the design-build-test-learn process. However, although automation works within these tools, most of these software tools are not integrated, and the process of transferring information between them is a very manual, error-prone process.

View Article and Find Full Text PDF

In synthetic biology, combinational circuits are used to program cells for various new applications like biosensors, drug delivery systems, and biofuels. Similar to asynchronous electronic circuits, some combinational genetic circuits may show unwanted switching variations () caused by multiple input changes. Depending on the biological circuit, glitches can cause irreversible effects and jeopardize the circuit's functionality.

View Article and Find Full Text PDF

The Synthetic Biology Open Language (SBOL) is a community-developed data standard that allows knowledge about biological designs to be captured using a machine-tractable, ontology-backed representation that is built using Semantic Web technologies. While early versions of SBOL focused only on the description of DNA-based components and their sub-components, SBOL can now be used to represent knowledge across multiple scales and throughout the entire synthetic biology workflow, from the specification of a single molecule or DNA fragment through to multicellular systems containing multiple interacting genetic circuits. The third major iteration of the SBOL standard, SBOL3, is an effort to streamline and simplify the underlying data model with a focus on real-world applications, based on experience from the deployment of SBOL in a variety of scientific and industrial settings.

View Article and Find Full Text PDF

Multiple input changes can cause unwanted switching variations, or , in the output of genetic combinational circuits. These glitches can have drastic effects if the output of the circuit causes irreversible changes within or with other cells such as a cascade of responses, apoptosis, or the release of a pharmaceutical in an off-target tissue. Therefore, avoiding unwanted variation of a circuit's output can be crucial for the safe operation of a genetic circuit.

View Article and Find Full Text PDF

Synthetic biology builds upon genetics, molecular biology, and metabolic engineering by applying engineering principles to the design of biological systems. When designing a synthetic system, synthetic biologists need to exchange information about multiple types of molecules, the intended behavior of the system, and actual experimental measurements. The Synthetic Biology Open Language (SBOL) has been developed as a standard to support the specification and exchange of biological design information in synthetic biology, following an open community process involving both wet bench scientists and dry scientific modelers and software developers, across academia, industry, and other institutions.

View Article and Find Full Text PDF
Article Synopsis
  • Engineers in synthetic biology use diagrams to depict genetic sequences and their functional relationships, helping with organization and communication.
  • The Synthetic Biology Open Language Visual (SBOL Visual) serves as a standard to create a uniform way to represent these genetic designs.
  • Version 2.2 of SBOL Visual enhances the previous version by updating molecular glyphs to align with SBO terms, adding new glyphs for various biological components, and introducing different representations for simple chemicals.
View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: