Objective: To identify the genetic basis of a childhood-onset syndrome of variable severity characterised by progressive spinocerebellar ataxia, mental retardation, psychotic episodes and cerebellar atrophy.
Methods: Identification of the underlying mutations by whole exome and whole genome sequencing. Consequences were examined in patients' cells and in yeast.
Free Radic Biol Med
December 2014
The mitochondrial presequence protease (PreP) is a member of the pitrilysin class of metalloproteases. It degrades the mitochondrial targeting presequences of mitochondria-localized proteins as well as unstructured peptides such as amyloid-β peptide. The specific activity of PreP is reduced in Alzheimer patients and animal models of Alzheimer disease.
View Article and Find Full Text PDFMost mitochondrial proteins possess N-terminal presequences that are required for targeting and import into the organelle. Upon import, presequences are cleaved off by matrix processing peptidases and subsequently degraded by the peptidasome Cym1/PreP, which also degrades Amyloid-beta peptides (Aβ). Here we find that impaired turnover of presequence peptides results in feedback inhibition of presequence processing enzymes.
View Article and Find Full Text PDFMitochondrial dysfunctions associated with amyloid-β peptide (Aβ) accumulation in mitochondria have been observed in Alzheimer's disease (AD) patients' brains and in AD mice models. Aβ is produced by sequential action of β- and γ-secretases cleaving the amyloid precursor protein (APP). The γ-secretase complex was found in mitochondria-associated endoplasmic reticulum membranes (MAM) suggesting that this could be a potential site of Aβ production, from which Aβ is further transported into the mitochondria.
View Article and Find Full Text PDFFree Radic Biol Med
December 2012
The mitochondrial peptidasome called presequence protease (PreP) is responsible for the degradation of presequences and other unstructured peptides including the amyloid-β peptide, whose accumulation may have deleterious effects on mitochondrial function. Recent studies showed that PreP activity is reduced in Alzheimer disease (AD) patients and AD mouse models compared to controls, which correlated with an enhanced reactive oxygen species production in mitochondria. In this study, we have investigated the effects of a biologically relevant oxidant, hydrogen peroxide (H(2)O(2)), on the activity of recombinant human PreP (hPreP).
View Article and Find Full Text PDFBackground: PII proteins have a fundamental role in the control of nitrogen metabolism in bacteria, through interactions with different PII targets, controlled by metabolite binding and post-translational modification, uridylylation in most organisms. In the photosynthetic bacterium Rhodospirillum rubrum, the PII proteins GlnB and GlnJ were shown, in spite of their high degree of similarity, to have different requirements for post-translational uridylylation, with respect to the divalent cations, Mg(2+) and Mn(2+).
Results: Given the importance of uridylylation in the functional interactions of PII proteins, we have hypothesized that the difference in the divalent cation requirement for the uridylylation is related to efficient binding of Mg/Mn-ATP to the PII proteins.
Most of the mitochondrial and chloroplastic proteins are nuclear encoded and synthesized in the cytosol as precursor proteins with N-terminal extensions called targeting peptides. Targeting peptides function as organellar import signals, they are recognized by the import receptors and route precursors through the protein translocons across the organellar membranes. After the fulfilled function, targeting peptides are proteolytically cleaved off inside the organelles by different processing peptidases.
View Article and Find Full Text PDF2-Oxoglutarate plays a central role as a signal in the regulation of nitrogen metabolism in the phototrophic diazotroph Rhodospirillum rubrum. In order to further study the role of this metabolite, we have constructed an R. rubrum strain that has the capacity to grow on 2-oxoglutarate as sole carbon source, in contrast to wild-type R.
View Article and Find Full Text PDFNitrogen fixation and ammonium assimilation in Rhodospirillum rubrum are regulated in response to changes in light availability, and we show that the response in terms of glutamine synthetase activity and P(II) modification is dependent on the nitrogen source used for growth, N(2) or glutamate, although both lead to nitrogenase derepression.
View Article and Find Full Text PDFIn the nitrogen-fixing bacterium Rhodospirillum rubrum, the GlnE adenylyltransferase (encoded by glnE) catalyzes reversible adenylylation of glutamine synthetase, thereby regulating nitrogen assimilation. We have generated glnE mutant strains that are unable to adenylylate glutamine synthetase (GS). Surprisingly, the activity of GS was lower in the mutants than in the wild type, even when grown in nitrogen-fixing conditions.
View Article and Find Full Text PDFThe PII family of signal transduction proteins is widespread amongst the three domains of life, and its members have fundamental roles in the general control of nitrogen metabolism. These proteins exert their regulatory role by direct protein-protein interaction with a multitude of cellular targets. The interactions are dependent on the binding of metabolites such as ATP, ADP and 2-oxoglutarate (2-OG), and on whether or not the PII protein is modified.
View Article and Find Full Text PDFWe report the amyloid-like properties of Escherichia coli transthyretin-like protein (TLP). TLP is 32% homologous to human transthyretin (hTTR), and is also tetrameric. In contrast to hTTR, TLP does not bind thyroxine.
View Article and Find Full Text PDFAdenylyltransferase (GlnE) catalyzes the reversible adenylylation of glutamine synthetase. In this report we present, for the first time, evidence for a peroxiredoxin activity of Rhodospirillum rubrum GlnE, through the carboxyl-terminal AhpC/thiol-specific antioxidant (TSA) domain. The combination of GlnE and AhpC/TSA domains within the same polypeptide constitutes a unique domain architecture that has not previously been identified among proteobacteria.
View Article and Find Full Text PDFThe hallmark of familial amyloid polyneuropathy (FAP) is the presence of extracellular deposits of transthyretin (TTR) aggregates and amyloid fibers in several tissues, particularly in the peripheral nervous system. The molecular pathways to neurodegeneration in FAP still remain elusive; activation of nuclear factor kappaB, pro-inflammatory cytokines, oxidative stress, and pro-apoptotic caspase-3 has been demonstrated "in vivo" in clinical samples and in cell culture systems. In this study, we investigated the involvement of endoplasmic reticulum (ER) stress response in FAP by showing activation of the classical unfolded protein response pathways in tissues not specialized in TTR synthesis but presenting extracellular TTR aggregate and fibril deposition.
View Article and Find Full Text PDF