Publications by authors named "Pedro Diaz-Leyva"

Colloidal suspensions of monodisperse spherical particles have been extensively studied since one of the main advantages of these systems is their similarity to atomic ones. This property has been used successfully in basic science to understand the equilibrium and non-equilibrium behavior of model colloids and to correlate them with their atomic counterparts. In contrast, suspensions used in technological processes are usually more complex.

View Article and Find Full Text PDF

Hypothesis: The anisotropic nature of colloidal particles results in orientation-dependent interactions that organize the particles into peculiar structures different from those formed by isotropic colloids. Particles with a hydrophilic hemisphere are expected to assemble in hydrophobic solvents due to the contribution of hydrophobic interactions as observed for molecular amphiphiles.

Experiments: Asymmetrically decorated silica-based Janus particles are dispersed in an apolar solvent, chloroform, and their structure and dynamics are studied by light scattering and compared with computer simulations.

View Article and Find Full Text PDF

Hypothesis: Colloids at fluid interfaces organize according to inter-particle interactions. The main contributions to an effective interaction potential are expected to be electrostatic dipole-dipole repulsion and capillary attraction due to fluid interface deformation. When these interactions are weak, a secondary minimum in the particle pair interaction potential is expected.

View Article and Find Full Text PDF

We study mixtures of amphiphilic Janus and homogeneous hydrophobic particles trapped at an air/water interface. In contrast to an expected monolayer formation, bilayers of colloidal particles are produced. Despite their strong interfacial adsorption, Janus particles form the upper layer.

View Article and Find Full Text PDF

Correction for 'Polymer-enforced crystallization of a eutectic binary hard sphere mixture' by Anna Kozina et al., Soft Matter, 2012, 8, 627-630.

View Article and Find Full Text PDF

In this work the crystallization kinetics of colloidal binary mixtures with attractive interaction potential (Asakura-Oosawa) has been addressed. Parameters such as fraction of crystals, linear crystal dimension and crystal packing have been quantified in order to understand how the crystal formation is driven in terms of the depth of the attractive potential and the composition of the binary mixture (described by the number ratio). It was found that inside the eutectic triangle, crystallization is mainly governed by nucleation and the crystal packing is close to the close-packing of hard spheres.

View Article and Find Full Text PDF

A vibrating version of patchy particles in two dimensions is introduced to study self-assembly of kagome lattices, disordered networks of looping structures, and linear arrays. Discontinuous molecular dynamics simulations in the canonical ensemble are used to characterize the molecular architectures and thermodynamic conditions that result in each of those morphologies, as well as the time evolution of lattice formation. Several versions of the new model are tested and analysed in terms of their ability to produce kagome lattices.

View Article and Find Full Text PDF

Using a simplified microstructural picture we show that interactions between thermosensitive microgel particles can be described by a polymer brushlike corona decorating the dense core. The softness of the potential is set by the relative thickness L0 of the compliant corona with respect to the overall size of the swollen particle R. The elastic modulus in quenched solid phases derived from the potential is found to be in excellent agreement with diffusing wave spectroscopy data and mechanical rheometry.

View Article and Find Full Text PDF

The microrheology of viscoelastic fluids containing light-scattering inclusions is measured by depolarized dynamic light scattering (DDLS) from optically anisotropic spherical colloidal probes. The anisotropy of the probes allows us to measure both their translational and the rotational mean squared displacements simultaneously, and DDLS allows us to suppress the light scattered from the inclusions. The storage and loss moduli are determined from both mean squared displacements and the results compared with mechanical measurements.

View Article and Find Full Text PDF

The microrheology of viscoelastic fluids is obtained from rotational diffusion of optically anisotropic spherical colloidal probes, measured by depolarized dynamic light scattering. The storage and loss moduli obtained from the rotational mean squared displacement is in excellent agreement with those obtained from translational diffusion and by mechanical measurements. We also show that this method is applicable to samples with strong light scattering components.

View Article and Find Full Text PDF

The translational and rotational motions of optically anisotropic spherical particles embedded in cross-linked polyacrylamide gels is studied by dynamic light scattering. The particles are liquid crystal droplets solidified in the nematic phase. The amount of cross linkers is varied to cross the sol-gel transition where the system becomes nonergodic for both translational and rotational diffusion modes of the probes.

View Article and Find Full Text PDF