Publications by authors named "Pedro D Maia"

Introduction: Sustaining attention is a notoriously difficult task as shown in a recent experiment where reaction times (RTs) and pupillometry data were recorded from 350 subjects in a 30-min vigilance task. Subjects were also presented with different types of goal, feedback, and reward.

Methods: In this study, we revisit this experimental data and solve three families of machine learning problems: (i) RT-regression problems, to predict subjects' RTs using all available data, (ii) RT-classification problems, to classify responses more broadly as attentive, semi-attentive, and inattentive, and (iii) to predict the subjects' experimental conditions from physiological data.

View Article and Find Full Text PDF

We accurately reconstruct the Local Field Potential time series obtained from anesthetized and awake rats, both before and during CO euthanasia. We apply the Eigensystem Realization Algorithm to identify an underlying linear dynamical system capable of generating the observed data. Time series exhibiting more intricate dynamics typically lead to systems of higher dimensions, offering a means to assess the complexity of the brain throughout various phases of the experiment.

View Article and Find Full Text PDF

Brain regions in Alzheimer's (AD) exhibit distinct vulnerability to the disease's hallmark pathology, with the entorhinal cortex and hippocampus succumbing early to tau tangles while others like primary sensory cortices remain resilient. The quest to understand how local/regional genetic factors, pathogenesis, and network-mediated spread of pathology together govern this selective vulnerability (SV) or resilience (SR) is ongoing. Although many risk genes in AD are known from gene association and transgenic studies, it is still not known whether and how their baseline expression signatures confer SV or SR to brain structures.

View Article and Find Full Text PDF

Neurodegenerative diseases such as Alzheimer's disease (AD) exhibit pathological changes in the brain that proceed in a stereotyped and regionally specific fashion, but the cellular and molecular underpinnings of regional vulnerability are currently poorly understood. Recent work has identified certain subpopulations of neurons in a few focal regions of interest, such as the entorhinal cortex, that are selectively vulnerable to tau pathology in AD. However, the cellular underpinnings of regional susceptibility to tau pathology are currently unknown, primarily because whole-brain maps of a comprehensive collection of cell types have been inaccessible.

View Article and Find Full Text PDF

The prion-like transsynaptic propagation of misfolded tau along the brain's connectome has previously been modeled using connectome-based network diffusion models. In addition to the connectome, interactions between the general neurological "milieu" in the neurodegenerative brain and proteinopathic species can also contribute to pathology propagation. Such a molecular nexopathy framework posits that the distinct characteristics of neurodegenerative disorders stem from interactions between the network and surrounding molecular players.

View Article and Find Full Text PDF

The advent of increasingly sophisticated imaging platforms has allowed for the visualization of the murine nervous system at single-cell resolution. However, current experimental approaches have not yet produced whole-brain maps of a comprehensive set of neuronal and nonneuronal types that approaches the cellular diversity of the mammalian cortex. Here, we aim to fill in this gap in knowledge with an open-source computational pipeline, Matrix Inversion and Subset Selection (MISS), that can infer quantitatively validated distributions of diverse collections of neural cell types at 200-μm resolution using a combination of single-cell RNA sequencing (RNAseq) and in situ hybridization datasets.

View Article and Find Full Text PDF

The neurodegenerative disorder amyotrophic lateral sclerosis (ALS) is characterized by the progressive loss of upper and lower motor neurons, with pathological involvement of cerebral motor and extra-motor areas in a clinicopathological spectrum with frontotemporal dementia (FTD). A key unresolved issue is how the non-random distribution of pathology in ALS reflects differential network vulnerability, including molecular factors such as regional gene expression, or preferential spread of pathology via anatomical connections. A system of histopathological staging of ALS based on the regional burden of TDP-43 pathology observed in postmortem brains has been supported to some extent by analysis of distribution of in vivo structural MRI changes.

View Article and Find Full Text PDF

Defects in axonal transport may partly underpin the differences between the observed pathophysiology of Alzheimer's disease (AD) and that of other non-amyloidogenic tauopathies. Particularly, pathological tau variants may have molecular properties that dysregulate motor proteins responsible for the anterograde-directed transport of tau in a disease-specific fashion. Here we develop the first computational model of tau-modified axonal transport that produces directional biases in the spread of tau pathology.

View Article and Find Full Text PDF

Computational modeling of the neural activity in the human spinal cord may help elucidate the underlying mechanisms involved in the complex processing of painful stimuli. In this study, we use a biologically-plausible model of the dorsal horn circuitry as a platform to simulate pain processing under healthy and pathological conditions. Specifically, we distort signals in the receptor fibers akin to what is observed in axonal damage and monitor the corresponding changes in five quantitative markers associated with the pain response.

View Article and Find Full Text PDF

Most organisms suffer neuronal damage throughout their lives, which can impair performance of core behaviors. Their neural circuits need to maintain function despite injury, which in particular requires preserving key system outputs. In this work, we explore whether and how certain structural and functional neuronal network motifs act as injury mitigation mechanisms.

View Article and Find Full Text PDF

There is enormous clinical value in inferring the brain regions initially atrophied in Parkinson disease for individual patients and understanding its relationship with clinical and genetic risk factors. The aim of this study is to leverage a new seed-inference algorithm demonstrated for Alzheimer's disease to the Parkinsonian context and to cluster patients in meaningful subgroups based on these incipient atrophy patterns. Instead of testing brain regions separately as the likely initiation site for each patient, we solve an L1-penalized optimization problem that can return a more predictive heterogeneous, multi-locus seed patterns.

View Article and Find Full Text PDF

Background: The release of a broad, longitudinal anatomical dataset by the Parkinson's Progression Markers Initiative promoted a surge of machine-learning studies aimed at predicting disease onset and progression. However, the excessive number of features used in these models often conceals their relationship to the Parkinsonian symptomatology.

Objectives: The aim of this study is two-fold: (i) to predict future motor and cognitive impairments up to four years from brain features acquired at baseline; and (ii) to interpret the role of pivotal brain regions responsible for different symptoms from a neurological viewpoint.

View Article and Find Full Text PDF

Local climate conditions play a major role in the biology of the Aedes aegypti mosquito, the main vector responsible for transmitting dengue, zika, chikungunya and yellow fever in urban centers. For this reason, a detailed assessment of periods in which changes in climate conditions affect the number of human cases may improve the timing of vector-control efforts. In this work, we develop new machine-learning algorithms to analyze climate time series and their connection to the occurrence of dengue epidemic years for seven Brazilian state capitals.

View Article and Find Full Text PDF

We introduce a computational model for the cellular level effects of firing rate filtering due to the major forms of neuronal injury, including demyelination and axonal swellings. Based upon experimental and computational observations, we posit simple phenomenological input/output rules describing spike train distortions and demonstrate that slow-gamma frequencies in the 38-41 Hz range emerge as the most robust to injury. Our signal-processing model allows us to derive firing rate filters at the cellular level for impaired neural activity with minimal assumptions.

View Article and Find Full Text PDF

The accurate diagnosis and assessment of neurodegenerative disease and traumatic brain injuries (TBI) remain open challenges. Both cause cognitive and functional deficits due to focal axonal swellings (FAS), but it is difficult to deliver a prognosis due to our limited ability to assess damaged neurons at a cellular level in vivo. We simulate the effects of neurodegenerative disease and TBI using convolutional neural networks (CNNs) as our model of cognition.

View Article and Find Full Text PDF

Alzheimer's disease, the most common form of dementia, is characterized by the emergence and spread of senile plaques and neurofibrillary tangles, causing widespread neurodegeneration. Though the progression of Alzheimer's disease is considered to be stereotyped, the significant variability within clinical populations obscures this interpretation on the individual level. Of particular clinical importance is understanding where exactly pathology, e.

View Article and Find Full Text PDF

Neurodegenerative diseases and traumatic brain injuries (TBI) are among the main causes of cognitive dysfunction in humans. At a neuronal network level, they both extensively exhibit focal axonal swellings (FAS), which in turn, compromise the information encoded in spike trains and lead to potentially severe functional deficits. There are currently no satisfactory quantitative predictors of decline in memory-encoding neuronal networks based on the impact and statistics of FAS.

View Article and Find Full Text PDF

The presence of diffuse Focal Axonal Swellings (FAS) is a hallmark cellular feature in many neurological diseases and traumatic brain injury. Among other things, the FAS have a significant impact on spike-train encodings that propagate through the affected neurons, leading to compromised signal processing on a neuronal network level. This work merges, for the first time, three fields of study: (i) signal processing in excitatory-inhibitory (EI) networks of neurons via population codes, (ii) decision-making theory driven by the production of evidence from stimulus, and (iii) compromised spike-train propagation through FAS.

View Article and Find Full Text PDF

Using a model for the dynamics of the full somatic nervous system of the nematode C. elegans, we address how biological network architectures and their functionality are degraded in the presence of focal axonal swellings (FAS) arising from neurodegenerative disease and/or traumatic brain injury. Using biophysically measured FAS distributions and swelling sizes, we are able to simulate the effects of injuries on the neural dynamics of C.

View Article and Find Full Text PDF

Determining the interactions and causal relationships between nodes in an unknown networked dynamical system from measurement data alone is a challenging, contemporary task across the physical, biological, and engineering sciences. Statistical methods, such as the increasingly popular Granger causality, are being broadly applied for data-driven discovery of connectivity in fields from economics to neuroscience. A common version of the algorithm is called pairwise-conditional Granger causality, which we systematically test on data generated from a nonlinear model with known causal network structure.

View Article and Find Full Text PDF

Background: Focal Axonal Swellings arise in several leading neurodegenerative diseases of the central nervous system and are hallmark features of concussions and traumatic brain injuries. Recent theories mapped how the shape of each swelling affects the propagation of spike trains and consequently the information encoded in them. Spikes can be selectively deleted, have their speed affected, or blocked depending upon the severity of the swelling.

View Article and Find Full Text PDF

Axonal swellings are almost universal in neurodegenerative diseases of the central nervous system, including Alzheimer's and Parkinson's disease. Concussions and traumatic brain injuries can also produce cognitive and behavioral deficits by compromising neuronal morphology. Using a spike metric analysis, we characterize computationally the effects of such axonal varicosities on spike train propagation by comparing Poisson spike train classes before and after propagation through a prototypical axonal enlargement, or focused axonal swelling.

View Article and Find Full Text PDF

Morphological reconstructions of axon segments reveal the abundance of geometrical ultrastructures that can dramatically affect the propagation of Action Potentials (AP). Moreover, deformations and swellings in axons resulting from brain traumas are associated to many neural dysfunctions and disorders. Our aim is to develop a computational framework to distinguish between geometrical enlargements that lead to minor changes in propagation from those that result in critical phenomenon such as reflection or blockage of the original traveling spike.

View Article and Find Full Text PDF