Publications by authors named "Pedro Catalao Moura"

Providing employees with proper work conditions should be one of the main concerns of any employer. Even so, in many cases, work shifts chronically expose the workers to a wide range of potentially harmful compounds, such as ammonia. Ammonia has been present in the composition of products commonly used in a wide range of industries, namely production in lines, and also laboratories, schools, hospitals, and others.

View Article and Find Full Text PDF

The analysis of volatile organic compounds (VOCs) from human matrices like breath, perspiration, and urine has received increasing attention from academic and medical researchers worldwide. These biological-borne VOCs molecules have characteristics that can be directly related to physiologic and pathophysiologic metabolic processes. In this work, gathers a total of 292 analytes that have been identified as potential biomarkers for the diagnosis of various non-carcinogenic diseases.

View Article and Find Full Text PDF

The field of organic-borne biomarkers has been gaining relevance due to its suitability for diagnosing pathologies and health conditions in a rapid, accurate, non-invasive, painless and low-cost way. Due to the lack of analytical techniques with features capable of analysing such a complex matrix as the human breath, the academic community has focused on developing electronic noses based on arrays of gas sensors. These sensors are assembled considering the excitability, sensitivity and sensing capacities of a specific nanocomposite, graphene.

View Article and Find Full Text PDF

The assessment of volatile breath biomarkers has been targeted with a lot of interest by the scientific and medical communities during the past decades due to their suitability for an accurate, painless, non-invasive, and rapid diagnosis of health states and pathological conditions. This paper reviews the most relevant bibliographic sources aiming to gather the most pertinent volatile organic compounds (VOCs) already identified as putative cancer biomarkers. Here, a total of 265 VOCs and the respective bibliographic sources are addressed regarding their scientifically proven suitability to diagnose a total of six carcinogenic diseases, namely lung, breast, gastric, colorectal, prostate, and squamous cell (oesophageal and laryngeal) cancers.

View Article and Find Full Text PDF

The employment of advanced analytical techniques and instrumentation enables the tracing of volatile organic compounds (VOCs) in vestigial concentrations (ppbv-pptv range) for several emerging applications, such as the research of disease biomarkers in exhaled air, the detection of metabolites in several biological processes, and the detection of pollutants for air quality control. In this scope, the storage of gaseous samples is crucial for preserving the integrity and stability of the collected set of analytes. This study aims to assess the suitability of three commercially available syringes as air containers (AC) that are commonly used for the collection, storage, isolation, and transportation of samples: glass syringes with glass plungers (AC1), and two plastic syringes, one with plastic plungers (AC2), and one with rubbered plungers (AC3).

View Article and Find Full Text PDF

Contemporary life is mostly spent in indoor spaces like private houses, workplaces, vehicles and public facilities. Nonetheless, the air quality in these closed environments is often poor which leads to people being exposed to a vast range of toxic and hazardous compounds. Volatile organic compounds (VOCs) are among the main factors responsible for the lack of air quality in closed spaces and, in addition, some of them are particularly hazardous to the human organism.

View Article and Find Full Text PDF

The inclusion of seaweeds in daily-consumption food is a worthy-of-attention challenge due to their high nutritional value and potential health benefits. In this way, their composition, organoleptic profile, and toxicity must be assessed. This work focuses on studying the volatile organic compounds (VOCs) emitted by three edible seaweeds, , , and , with the aim of deepening the knowledge regarding their organoleptic profiles.

View Article and Find Full Text PDF

Normal and abnormal/pathological status of physiological processes in the human organism can be characterized through Volatile Organic Compounds (VOCs) emitted in breath. Recently, a wide range of volatile analytes has risen as biomarkers. These compounds have been addressed in the scientific and medical communities as an extremely valuable metabolic window.

View Article and Find Full Text PDF

Industrial environments are frequently composed of potentially toxic and hazardous compounds. Volatile organic compounds (VOCs) are one of the most concerning categories of analytes commonly existent in the indoor air of factories' facilities. The sources of VOCs in the industrial context are abundant and a vast range of human health conditions and pathologies are known to be caused by both short- and long-term exposures.

View Article and Find Full Text PDF

Society's concerns about the citizens exposure to possibly dangerous environments have recently risen; nevertheless, the assessment of indoor air quality still represents a major contemporary challenge. The volatile organic compounds (VOCs) are among the main factors responsible for deteriorating air quality conditions. These analytes are very common in daily-use environments and they can be extremely hazardous to human health, even at trace concentrations levels.

View Article and Find Full Text PDF