Sialic acids at the cell surface of dendritic cells (DCs) play an important immunomodulatory role, and their manipulation enhances DC maturation, leading to heightened T cell activation. Particularly, at the molecular level, the increased stability of surface MHC-I molecules in monocyte-derived DCs (MoDCs) underpins an improved DC: T cell interaction. In this study, we focused on the impact of sialic acid remodelling by treatment with Clostridium perfringens sialidase on MoDCs' phenotypic and functional characteristics.
View Article and Find Full Text PDFAntibody-drug conjugates (ADCs) are among the fastest-growing classes of therapeutics in oncology. Although ADCs are in the spotlight, they still present significant engineering challenges. Therefore, there is an urgent need to develop more stable and effective ADCs.
View Article and Find Full Text PDFAfrican swine fever virus (ASFV) is the etiological agent of a highly contagious, hemorrhagic infectious swine disease, with a tremendous sanitary and economic impact on a global scale. Currently, there are no globally available vaccines or treatments. The p10 protein, a structural nucleoprotein encoded by ASFV, has been previously described as capable of binding double-stranded DNA (dsDNA), which may have implications for viral replication.
View Article and Find Full Text PDFThe cellulosome is an elaborate multi-enzyme structure secreted by many anaerobic microorganisms for the efficient degradation of lignocellulosic substrates. It is composed of multiple catalytic and non-catalytic components that are assembled through high-affinity protein-protein interactions between the enzyme-borne dockerin (Doc) modules and the repeated cohesin (Coh) modules present in primary scaffoldins. In some cellulosomes, primary scaffoldins can interact with adaptor and cell-anchoring scaffoldins to create structures of increasing complexity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2022
Heparan sulfate proteoglycans (HSPGs) mediate essential interactions throughout the extracellular matrix (ECM), providing signals that regulate cellular growth and development. Altered HSPG composition during tumorigenesis strongly aids cancer progression. Heparanase (HPSE) is the principal enzyme responsible for extracellular heparan sulfate catabolism and is markedly up-regulated in aggressive cancers.
View Article and Find Full Text PDFGreen macroalgae, e.g., , are valuable bioactive sources of nutrients; but algae recalcitrant cell walls, composed of a complex cross-linked matrix of polysaccharides, can compromise their utilization as feedstuffs for monogastric animals.
View Article and Find Full Text PDFβ-glucans are a diverse group of polysaccharides composed of β-1,3 or β-(1,3-1,4) linked glucose monomers. They are mainly synthesized by fungi, plants, seaweed and bacteria, where they carry out structural, protective and energy storage roles. Because of their unique physicochemical properties, they have important applications in several industrial, biomedical and biotechnological processes.
View Article and Find Full Text PDFAnti-CD20 therapies have revolutionized the treatment of B-cell malignancies. Despite these advances, relapsed and refractory disease remains a major treatment challenge. The optimization of CD20-targeted immunotherapies is considered a promising strategy to improve current therapies.
View Article and Find Full Text PDFChemokines are a large family of small chemotactic cytokines that coordinates immune cell trafficking. In cancer, they have a pivotal role in the migration pattern of immune cells into the tumor, thereby shaping the tumor microenvironment immune profile, often towards a pro-tumorigenic state. Furthermore, chemokines can directly target non-immune cells in the tumor microenvironment, including cancer, stromal and vascular endothelial cells.
View Article and Find Full Text PDFIn the present study, 199 pre-selected Carbohydrate-Active enZymes (CAZymes) and sulfatases were assessed, either alone or in combination, to evaluate their capacity to disrupt Laminaria digitata cell wall, with the consequent release of interesting nutritional compounds. A previously characterized individual alginate lyase, belonging to the family 7 of polysaccharide lyases (PL7) and produced by Saccharophagus degradans, was shown to be the most efficient in the in vitro degradation of L. digitata cell wall.
View Article and Find Full Text PDFThe Cellulosome is an intricate macromolecular protein complex that centralizes the cellulolytic efforts of many anaerobic microorganisms through the promotion of enzyme synergy and protein stability. The assembly of numerous carbohydrate processing enzymes into a macromolecular multiprotein structure results from the interaction of enzyme-borne dockerin modules with repeated cohesin modules present in noncatalytic scaffold proteins, termed scaffoldins. Cohesin-dockerin (Coh-Doc) modules are typically classified into different types, depending on structural conformation and cellulosome role.
View Article and Find Full Text PDFCellulosomes are elaborate multienzyme complexes capable of efficiently deconstructing lignocellulosic substrates, produced by cellulolytic anaerobic microorganisms, colonizing a large variety of ecological niches. These macromolecular structures have a modular architecture and are composed of two main elements: the cohesin-bearing scaffoldins, which are non-catalytic structural proteins, and the various dockerin-bearing enzymes that tenaciously bind to the scaffoldins. Cellulosome assembly is mediated by strong and highly specific interactions between the cohesin modules, present in the scaffoldins, and the dockerin modules, present in the catalytic units.
View Article and Find Full Text PDFUnderstanding the specific molecular interactions between proteins and β1,3-1,4-mixed-linked d-glucans is fundamental to harvest the full biological and biotechnological potential of these carbohydrates and of proteins that specifically recognize them. The family 11 carbohydrate-binding module from Clostridium thermocellum (CtCBM11) is known for its binding preference for β1,3-1,4-mixed-linked over β1,4-linked glucans. Despite the growing industrial interest of this protein for the biotransformation of lignocellulosic biomass, the molecular determinants of its ligand specificity are not well defined.
View Article and Find Full Text PDFSialic acids are a family of related sugars that play essential roles in many biological events intimately linked to cellular recognition in both health and disease. Sialidases are therefore orchestrators of cellular biology and important therapeutic targets for viral infection. Here, we sought to define if uncharacterized sialidases would provide distinct paradigms in sialic acid biochemistry.
View Article and Find Full Text PDFThe cellulosomal enzyme, RfGH5, of Ruminococcus flavefaciens contains an N-terminal module, a family 5 glycoside hydrolase GH5_4 with a putative endoglucanase activity, while C-terminal domain is a putative endo-mannanase (GH5_7). The two putative catalytic modules are separated by family 80 carbohydrate binding module (CBM80) having wide ligand specificity. The putative endo-mannanase module, GH5_7 (RfGH5_7), was cloned, expressed in Escherichia coli BL-21(DE3) cells and purified.
View Article and Find Full Text PDFCellulosomes are highly sophisticated molecular nanomachines that participate in the deconstruction of complex polysaccharides, notably cellulose and hemicellulose. Cellulosomal assembly is orchestrated by the interaction of enzyme-borne dockerin (Doc) modules to tandem cohesin (Coh) modules of a non-catalytic primary scaffoldin. In some cases, as exemplified by the cellulosome of the major cellulolytic ruminal bacterium Ruminococcus flavefaciens, primary scaffoldins bind to adaptor scaffoldins that further interact with the cell surface via anchoring scaffoldins, thereby increasing cellulosome complexity.
View Article and Find Full Text PDFCohesin-Dockerin interactions are at the core of cellulosomal assembly and organization. They are highly specific and form stable complexes, allowing cellulosomes to adopt distinct conformations. Each cellulosomal system seems to have a particular organizational strategy that can vary in complexity according to the nature of its Cohesin-Dockerin interactions.
View Article and Find Full Text PDFThe cellulosome is a remarkably intricate multienzyme nanomachine produced by anaerobic bacteria to degrade plant cell wall polysaccharides. Cellulosome assembly is mediated through binding of enzyme-borne dockerin modules to cohesin modules of the primary scaffoldin subunit. The anaerobic bacterium produces a highly intricate cellulosome comprising an adaptor scaffoldin, ScaB, whose cohesins interact with the dockerin of the primary scaffoldin (ScaA) that integrates the cellulosomal enzymes.
View Article and Find Full Text PDFCellulosomes are sophisticated multi-enzymatic nanomachines produced by anaerobes to effectively deconstruct plant structural carbohydrates. Cellulosome assembly involves the binding of enzyme-borne dockerins (Doc) to repeated cohesin (Coh) modules located in a non-catalytic scaffoldin. Docs appended to cellulosomal enzymes generally present two similar Coh-binding interfaces supporting a dual-binding mode, which may confer increased positional adjustment of the different complex components.
View Article and Find Full Text PDFProtein-protein interactions play a vital role in cellular processes as exemplified by assembly of the intricate multi-enzyme cellulosome complex. Cellulosomes are assembled by selective high-affinity binding of enzyme-borne dockerin modules to repeated cohesin modules of structural proteins termed scaffoldins. Recent sequencing of the fiber-degrading Ruminococcus flavefaciens FD-1 genome revealed a particularly elaborate cellulosome system.
View Article and Find Full Text PDFDeconstruction of cellulose, the most abundant plant cell wall polysaccharide, requires the cooperative activity of a large repertoire of microbial enzymes. Modular cellulases contain non-catalytic type A carbohydrate-binding modules (CBMs) that specifically bind to the crystalline regions of cellulose, thus promoting enzyme efficacy through proximity and targeting effects. Although type A CBMs play a critical role in cellulose recycling, their mechanism of action remains poorly understood.
View Article and Find Full Text PDFDuring the course of evolution, the cellulosome, one of Nature's most intricate multi-enzyme complexes, has been continuously fine-tuned to efficiently deconstruct recalcitrant carbohydrates. To facilitate the uptake of released sugars, anaerobic bacteria use highly ordered protein-protein interactions to recruit these nanomachines to the cell surface. Dockerin modules located within a non-catalytic macromolecular scaffold, whose primary role is to assemble cellulosomal enzymatic subunits, bind cohesin modules of cell envelope proteins, thereby anchoring the cellulosome onto the bacterial cell.
View Article and Find Full Text PDFThe recent division of the large glycoside hydrolase family 43 (GH43) into subfamilies offers a renewed opportunity to develop structure-function studies aimed at clarifying the molecular determinants of substrate specificity in carbohydrate-degrading enzymes. α-L-Arabinofuranosidases (EC 3.2.
View Article and Find Full Text PDF