Nitrogen-fixing symbioses allow legumes to thrive in nitrogen-poor soils at the cost of diverting some photoassimilate to their microsymbionts. Effort is being made to bioengineer nitrogen fixation into nonleguminous crops. This requires a quantitative understanding of its energetic costs and the links between metabolic variations and symbiotic efficiency.
View Article and Find Full Text PDFContaminated fresh produce has been routinely linked to outbreaks of Salmonellosis. Multiple studies have identified factors associated with successful colonization of diverse plant niches and tissues. It has also been well documented that can benefit from the conditions generated during plant disease by host-compatible plant pathogens.
View Article and Find Full Text PDFThe aromatic amino acid tryptophan is the main precursor for indole-3-acetic acid (IAA), which involves various parallel routes in plants, with indole-3-acetaldoxime (IAOx) being one of the most common intermediates. Auxin signaling is well known to interact with free radical nitric oxide (NO) to perform a more complex effect, including the regulation of root organogenesis and nitrogen nutrition. To fathom the link between IAA and NO, we use a metabolomic approach to analyze the contents of low-molecular-mass molecules in cultured cells of after the application of S-nitrosoglutathione (GSNO), an NO donor or IAOx.
View Article and Find Full Text PDFWhile flux balance analysis (FBA) provides a framework for predicting steady-state leaf metabolic network fluxes, it does not readily capture the response to environmental variables without being coupled to other modelling formulations. To address this, we coupled an FBA model of 903 reactions of soybean (Glycine max) leaf metabolism with e-photosynthesis, a dynamic model that captures the kinetics of 126 reactions of photosynthesis and associated chloroplast carbon metabolism. Successful coupling was achieved in an iterative formulation in which fluxes from e-photosynthesis were used to constrain the FBA model and then, in turn, fluxes computed from the FBA model used to update parameters in e-photosynthesis.
View Article and Find Full Text PDFStomatins belong to the band-7 protein family, a diverse group of conserved eukaryotic and prokaryotic membrane proteins involved in the formation of large protein complexes as protein-lipid scaffolds. The Arabidopsis (Arabidopsis thaliana) genome contains two paralogous genes encoding stomatin-like proteins (SLPs; AtSLP1 and AtSLP2) that are phylogenetically related to human SLP2, a protein involved in mitochondrial fusion and protein complex formation in the mitochondrial inner membrane. We used reverse genetics in combination with biochemical methods to investigate the function of AtSLPs.
View Article and Find Full Text PDF