To address the remaining knowledge gap regarding the distribution of seagrasses in Ireland, this study aimed a) to create an updated seagrass (Zostera spp.) distribution map, and b) to evaluate the environmental quality to which seagrass meadows are exposed. To achieve the first objective, we (i) combined the available data on seagrass distribution published to date, and (ii) mapped additional meadows by implementing an integrated method based on species distribution models, satellite-derived images, and snorkelling-based surveys.
View Article and Find Full Text PDFSeagrasses, which are marine flowering plants, provide numerous ecological services and goods. is the most widely distributed seagrass in temperate regions of the northern hemisphere, tolerant of a wide range of environmental conditions. This study aimed to (i) examine seasonal trends and correlations between key seagrass traits such as biomass production and biochemical composition, and (ii) compare seasonal adaptation of two ecotypes of exposed to similar environmental conditions on the west coast of Ireland.
View Article and Find Full Text PDFThe Mediterranean Sea has been experiencing rapid increases in temperature and salinity triggering its tropicalization. Additionally, its connection with the Red Sea has been favouring the establishment of non-native species. In this study, we investigated the effects of predicted climate change and the introduction of invasive seagrass species (Halophila stipulacea) on the native Mediterranean seagrass community (Posidonia oceanica and Cymodocea nodosa) by applying a novel ecological and spatial model with different configurations and parameter settings based on a Cellular Automata (CA).
View Article and Find Full Text PDFGlobal warming is expected to have inexorable and profound effects on marine ecosystems, particularly in foundation species such as seagrasses. Identifying responses to warming and comparing populations across natural temperature gradients can inform how future warming will impact the structure and function of ecosystems. Here, we investigated how thermal environment, intra-shoot and spatial variability modulate biochemical responses of the Mediterranean seagrass Posidonia oceanica.
View Article and Find Full Text PDFUnlabelled: The seagrass is native to the Red Sea. It invaded the Mediterranean over the past century and most of the Caribbean over the last two decades. Understanding the main drivers behind the successful invasiveness of has become crucial.
View Article and Find Full Text PDFOcean acidification has been consistently evidenced to have profound and lasting impacts on marine species. Observations have shown seagrasses to be highly susceptible to future increased pCO conditions, but the responses of early life stages as seedlings are poorly understood. This study aimed at evaluating how projected Mediterranean Sea acidification affects the survival, morphological and biochemical development of Posidonia oceanica seedlings through a long-term field experiment along a natural low pH gradient.
View Article and Find Full Text PDFPrimary producers nutritional content affects the entire food web. Here, changes in nutritional value associated with temperature rise and the occurrence of marine heat waves (MHWs) were explored in the endemic Mediterranean seagrass Posidonia oceanica. The variability of fatty acids (FAs) composition and carbon (C) and nitrogen (N) content were examined during summer 2021 from five Mediterranean sites located at the same latitude but under different thermal environments.
View Article and Find Full Text PDFAcclimation is a response that results from chronic exposure of an individual to a new environment. This study aimed to investigate whether the thermal environment affects the early development of the seagrass Posidonia oceanica, and whether the effects of a field-simulated Marine Heat Wave (MHW) on seedlings change depending on acclimation. The experiment was done in the field using a crossed design of Acclimation (acclimated vs unacclimated) and MHW (present vs absent) factors.
View Article and Find Full Text PDFBackground: Halophila stipulacea seagrass meadows are an ecologically important and threatened component of the ecosystem in the Gulf of Aqaba. Recent studies have demonstrated correlated geographic patterns for leaf epiphytic community composition and leaf morphology, also coinciding with different levels of water turbidity and nutrient concentrations. Based on these observations, workers have suggested an environmental microbial fingerprint, which may reflect various environmental stress factors seagrasses have experienced, and may add a holobiont level of plasticity to seagrasses, assisting their acclimation to changing environments and through range expansion.
View Article and Find Full Text PDFDuring the last 150 years, the tropical seagrass species has established itself in the southern and eastern parts of the Mediterranean Sea. More recently (2018), was observed for the first time in the eastern Mediterranean, and was described as the second non-native seagrass species in the Mediterranean Sea. We implemented a species distribution model (SDM) approach to (1) hindcast the habitat suitability of over the last 100 years in the Mediterranean basin, and (2) to model the increase in the potential habitat suitability of and during the current century under two very different climate scenarios, RCP 2.
View Article and Find Full Text PDFZostera marina is a dominant meadow-forming seagrass in temperate regions in the northern hemisphere. Here, fatty acid content and composition, and pigmentation, in leaves were evaluated across temporal (April, July, November -2015 and January-2016) and latitudinal (Greenland to southern Spain) environmental gradients. Content of total fatty acids (TFA) in samples collected in Ireland during warmer periods (summer) was 2-3 times lower than in winter and exhibited a lower proportion of polyunsaturated fatty acids (PUFAs), which have high high-nutritional value relative to saturated fatty acids (SAFA).
View Article and Find Full Text PDFHalophila stipulacea is a small tropical seagrass species native to the Red Sea. Due to its invasive character, there is growing interest in understanding its ability to thrive in a broad range of ecological niches. We studied temporal (February 2014 and July 2014), depth (5, 9, 18 m) and spatial (NB and SB) related dynamics of H.
View Article and Find Full Text PDFGlobal warming is emerging as one of the most critical threats to terrestrial and marine species worldwide. This study assessed the effects of simulated warming events in culture on two seagrass species, Posidonia oceanica and Cymodocea nodosa, which play a key role in coastal ecosystems of the Mediterranean Sea. Changes in fatty acids as key metabolic indicators were assessed in specimens from two geographical populations of each species adapted to different in situ temperature regimes.
View Article and Find Full Text PDFSeagrasses, marine flowering plants, provide a wide range of ecosystem services, defined here as natural processes and components that directly or indirectly benefit human needs. Recent research has shown that there are still many gaps in our comprehension of seagrass ecosystem service provision. Furthermore, there seems to be little public knowledge of seagrasses in general and the benefits they provide.
View Article and Find Full Text PDF