The protocol introduces a novel multi-chamber bioreactor tailored for ex-vivo cell culture in dentistry research, emulating the 3D dental environment to propel research in dental applications. Constructed primarily from a polymeric material with a sophisticated 3D design, the bioreactor securely holds teeth structures within sealed chambers, enabling controlled perfusion of culture medium crucial for cell growth through a singular entry and exit point. An integrated electronic system manages flow and pressure, ensuring precise control over environmental conditions.
View Article and Find Full Text PDFTissue Eng Part B Rev
October 2023
The paradigm shift in the endodontic field from replacement toward regenerative therapies has witnessed the ever-growing research in tissue engineering and regenerative medicine targeting pulp-dentin complex in the past few years. Abundant literature on the subject that has been produced, however, is scattered over diverse areas of knowledge. Moreover, the terminology and concepts are not always consensual, reflecting the range of research fields addressing this subject, from endodontics to biology, genetics, and engineering, among others.
View Article and Find Full Text PDFThe tooth is made up of three mineralized tissues, enamel, dentin, and cementum, which surround a non-mineralized tissue called the dental pulp. Micro-computed tomography (mCT) is an imaging technology based on X-rays that allows non-invasive visualization of objects at a microscopic scale, according to their radiopacity and in three dimensions (3D). Likewise, it allows the subsequent execution of morphological and quantitative analysis of the objects, such as, for example, the determination of the relative mineral density (MD).
View Article and Find Full Text PDFBone is a vascularized organic-inorganic composite tissue that shows a heavily-mineralized extracellular matrix (ECM) on the nanoscale. Herein, the nucleation of calcium phosphates during the biomineralization process was mimicked using negatively-charged cellulose nanocrystals (CNCs). These mineralized-CNCs were combined with platelet lysate to produce nanocomposite scaffolds through cryogelation to mimic bone ECM protein-mineral composite nature and take advantage of the bioactivity steaming from platelet-derived biomolecules.
View Article and Find Full Text PDFRecurrent microbial infections are a major cause of surgical failure and morbidity. Wound healing strategies based on hydrogels have been proposed to provide at once a barrier against pathogen microbial colonization, as well as a favorable environment for tissue repair. Nevertheless, most biocompatible hydrogel materials are more bacteriostatic than antimicrobial materials, and lack specific action against pathogens.
View Article and Find Full Text PDFTissue engineered (TE) substitutes of clinically relevant sizes need an adequate vascular system to ensure function and proper tissue integration after implantation. However, the predictable vascularization of TE substitutes is yet to be achieved. Molecular weight variations in hyaluronic acid (HA) have been pointed to trigger angiogenesis.
View Article and Find Full Text PDFDental pulp tissue engineering (TE) endeavors to regenerate dentin/pulp complex by combining a suitable supporting matrix, stem cells, and biochemical stimuli. Such procedures foresee a matrix that can be easily introduced into the root canal system (RCS) and tightly adhere to dentin walls to assure the dentin surface's proper colonization with progenitor cells capable of restoring the dentin/pulp complex. Herein was investigated an injectable self-setting hyaluronic acid-based (HA) hydrogel system, formed by aldehyde-modified (a-HA) with hydrazide-modified (ADH), enriched with platelet lysate (PL), for endodontic regeneration.
View Article and Find Full Text PDFPlatelet-rich fibrin (PRF) has been incorporated in surgical procedures to promote tissue and bone healing, particularly in human medicine. The rationale for the use of platelet-based products stems from the fact that platelets, after being activated, release growth factors (GFs) and other active molecules such as cytokines, that modulate inflammation and tissue repair. Although PRF has been advanced as a therapeutic treatment for veterinary use, namely in canine and feline patients (following human medicine developments), to our knowledge a full characterization of PRF therapeutic effectors has never been performed.
View Article and Find Full Text PDFThis study aimed to compare the efficacy of XP-endo Finisher R and IrriSafe, with a solvent mixture of Methyl ethyl ketone/Tetrachloroethylene (MEK/TCE), in the removal of root filling residues. Twenty-four human mandibular incisors were pair-matched by micro-computed tomography according to volume and aspect ratio. After retreatment, specimens were allocated to two experimental groups (n = 12), according to the supplementary instrument used.
View Article and Find Full Text PDFIn the field of tissue engineering and regenerative medicine, hydrogels are used as biomaterials to support cell attachment and promote tissue regeneration due to their unique biomimetic characteristics. The use of natural-origin materials significantly influenced the origin and progress of the field due to their ability to mimic the native tissues' extracellular matrix and biocompatibility. However, the majority of these natural materials failed to provide satisfactory cues to guide cell differentiation toward the formation of new tissues.
View Article and Find Full Text PDFOsteoporosis is a metabolic disorder characterized by a loss of bone mass and structure and increasing the risk of fragility fractures, mostly among postmenopausal women. Sheep is a recognized large animal model for osteoporosis research. An experimental group of ewes (3-4 years old) was subjected to ovariectomy (OVX) and weekly glucocorticoid (GC) application for 24 weeks and compared with a sham control group.
View Article and Find Full Text PDFPlatelet-derived products (PDPs) have gained popularity, mainly due to their high concentrations of bioactive molecules such as growth factors and cytokines, which play important roles in tissue healing and regeneration. PDPs are obtained through minimally invasive procedures and their therapeutic effect has been widely recognized. In veterinary medicine, however, the lack of standard protocols to generate PDPs is a major hurdle for assessing the clinical relevance of PDP-based therapies and for their widespread usage.
View Article and Find Full Text PDFThe currently used hemostatic agents are highly effective in stopping hemorrhages but have a limited role in the modulation of the wound-healing environment. Herein, we propose an intrinsically bioactive hemostatic cryogel based on platelet lysate (PL) and aldehyde-functionalized cellulose nanocrystals (a-CNCs). PL has attracted great attention as an inexpensive milieu of therapeutically relevant proteins; however, its application as a hemostatic agent exhibits serious constraints (, structural integrity and short shelf-life).
View Article and Find Full Text PDFBackground: This work aimed to evaluate the efficacy of sonic agitation of a binary mixture of solvents (methyl ethyl ketone/tetrachloroethylene) on filling remnants removal and compare the effects of solvent agitation with the enlargement to the next instrument size.
Methods: Twenty-four mandibular incisors were prepared with ProTaper Next (X1, X2) and obturated with the single-cone technique and AH Plus sealer. The teeth were retreated with ProTaper Universal Retreatment and ProTaper Next and divided into two groups ( = 12) according to the final instrument (X3 or X4).
Tendon injuries constitute a significant healthcare problem with variable clinical outcomes. The complex interplay of tissue homeostasis, degeneration, repair, and regeneration makes the development of successful delivery therapeutic strategies challenging. Platelet-rich hemoderivatives, a source of supra-physiologic concentrations of human therapeutic factors, are a promising application to treat tendon injuries from the perspective of tendon tissue engineering, although the outcomes remain controversial.
View Article and Find Full Text PDFInjectable hydrogels are particularly interesting for applications in minimally invasive tissue engineering and regenerative medicine strategies. However, the typical isotropic microstructure of these biomaterials limits their potential for the regeneration of ordered tissues. In the present work, we decorated rod-shaped cellulose nanocrystals with magnetic nanoparticles and coated these with polydopamine and polyethylene glycol polymer brushes to obtain chemical and colloidal stable nanoparticles.
View Article and Find Full Text PDFUnlabelled: Bioengineered soft tissues on any meaningful scale or complexity must incorporate aspects of the functional tissue, namely a vasculature, providing cells oxygen and nutrients critical for their survival. However, the ability of tissue engineering strategies to promote a fast revascularization is critically limited. Particularly in endodontic regenerative therapies, the complicated anatomy of the root canal system, and the narrow apical access limit the supply of new blood vessels and pulp tissue ingrowth.
View Article and Find Full Text PDFClinical summary: A tissue engineering approach was used to aid the surgical repair of a chronic oronasal fistula (ONF) in a 13-year-old cat. A three-dimensional (3D) printed mesh, tailored to the size and shape of the ONF, was created to support a soft tissue flap used to close the defect; and also to provide a matrix for mesenchymal stromal cells present in bone marrow aspirate and bioactive cytokines and growth factors present in platelet-rich fibrin harvested from the patient. A CT scan at day 75 after surgery revealed the formation of new tissue in the defect and the healing process was complete at follow-up 6 months after surgery.
View Article and Find Full Text PDFThe restoration of dentine-pulp complex remains a challenge for dentists; nonetheless, it has been poorly addressed. An ideal system should modulate the host response, as well as enable the recruitment, proliferation and differentiation of relevant progenitor cells. Herein was proposed a photocrosslinkable hydrogel system based on hyaluronic acid (HA) and platelet lysate (PL).
View Article and Find Full Text PDFPurpose Of The Review: This review summarizes research on the use of sheep and goats as large animal models of human osteoporosis for preclinical and translational studies.
Recent Findings: The most frequent osteoporotic sheep model used is the ovariectomized sheep with 12 months post-operatively or more and the combined treatment of ovariectomized sheep associated to calcium/vitamin D-deficient diet and glucocorticoid applications for 6 months, but other methods are also described, like pinealectomy or hypothalamic-pituitary disconnection in ovariectomized sheep. The goat model for osteoporosis research has been used in a very limited number of studies in osteoporosis research relative to sheep.
Unlabelled: Platelet-derived biomaterials are widely explored as cost-effective sources of therapeutic factors, holding a strong potential for endogenous regenerative medicine. Particularly for tendon repair, treatment approaches that shift the injury environment are explored to accelerate tendon regeneration. Herein, genipin-crosslinked platelet lysate (PL) patches are proposed for the delivery of human-derived therapeutic factors in patch augmentation strategies aiming at tendon repair.
View Article and Find Full Text PDFBlood components play key roles in the modulation of the wound healing process and, together with the provisional fibrin matrix ability to selectively bind bioactive molecules and control its spatial-temporal presentation, define the complex microenvironment that characterize this biological process. As a biomimetic approach, the use of blood derivatives in regenerative strategies has awakened as a source of multiple therapeutic biomolecules. Nevertheless, and despite their clinical relevance, blood derivatives have been showing inconsistent therapeutic results due to several factors, including proper control over their delivery mechanisms.
View Article and Find Full Text PDFWith currently available therapies, full regeneration of lost periodontal tissues after periodontitis cannot be achieved. In this study, a combined compartmentalized system was tested, composed of (a) a platelet lysate (PL)-based construct, which was placed along the root aiming to regenerate the root cementum and periodontal ligament, and (b) a calcium phosphate cement composite incorporated with hyaluronic acid microspheres loaded with PL, aiming to promote the regeneration of alveolar bone. This bilayered system was assessed in a 3-wall periodontal defect in Wistar rats.
View Article and Find Full Text PDF