In this work, we investigated the MOCVD conditions to synthesize thin films with the hexagonal -LuMnO phase as a potential low-band gap ferroelectric material. The main parameters investigated were the ratio of organometallic starting materials, substrate temperature, and annealing effect. Two different substrates were used in the study: fused silica (SiO) glass and platinized silicon (Pt\Ti\SiO\Si(100)).
View Article and Find Full Text PDFBackground: The apple (Malus domestica Borkh.) plays an important role in the trendy market of dried snacks because of its exceptional flavor and texture. In addition to the health benefits, there is also a general disposition to consume organic and do-it-yourself products.
View Article and Find Full Text PDFThe effects on the structure and magnetic properties of EuYMnO (0.0 ≤ x ≤ 0.5) thin films due to lattice strain were investigated and compared with those obtained in equivalent composition ceramics.
View Article and Find Full Text PDFaccidentally arrived in Europe (France) in 2004, and rapidly expanded throughout the entire country. Its presence in mainland Portugal was first noticed in 2011. Being an invasive species with no natural predators in the region to control it, it has caused enormous environmental and economic damage, particularly on (honeybee) colonies.
View Article and Find Full Text PDFCalcination treatments in the range of 500-900 °C of TiO synthesised by the sol-gel resulted in materials with variable physicochemical (i.e., optical, specific surface area, crystallite size and crystalline phase) and morphological properties.
View Article and Find Full Text PDFThis work intends to promote the growth of microalgae biomass with simultaneous remediation of an agro-industrial wastewater. Winery wastewater (WW) was used as growth media for the cyanobacteria Arthrospira maxima and the green microalgae Scenedesmus obliquus, Auxenochlorella protothecoides and Chlorella vulgaris, under mixotrophic and heterotrophic conditions. The latter species stands out under mixotrophic conditions, with removals of TOC and TN above 90%.
View Article and Find Full Text PDFThe changes in the chemical structure, surface morphology and crystallinity are reported for three different polymers (LDPE, PET and uPVC) in microplastic form, after being artificially exposed to different aging agents that can affect microplastics in urban environments: ozone, UV-C, and solar radiation. In parallel to the laboratory experiments, the microplastics were exposed to real weathering conditions for three-months in a building rooftop located in the city of Porto (Portugal). By analysing the (virgin and aged) microplastic samples periodically through ATR-FTIR spectroscopy and estimating the Carbonyl Index, it was possible to sketch the aging degree evolution through time and identify the most aggressive agents for each polymer regarding the changes in their chemical structure.
View Article and Find Full Text PDFA wireless UV-A LEDs lab-scale reactor powered by a resonant inductive coupling (RLC) system was built to maximize the UV photon absorption of agro-industrial wastewaters. The UV-A LEDs (λ = 365 nm) energy was supplied through a magnetic field generated inside of the photoreactor by induction coils placed on the external wall made of polyvinyl chloride. Immersing the light sources in the wastewater increases the photon transfer efficiency and the reaction rate.
View Article and Find Full Text PDFAn ultraviolet light emitting diode (UV-A LED) system was built to test the capability of performing heterogeneous photocatalysis using TiO P25. The LEDs maximum wavelength is 365 nm with an irradiance power of 85 W m. The device was tested in batch and continuous (CSTR) mode in a laboratorial scale reactor.
View Article and Find Full Text PDFA highly hydrophilic carbon nanomaterial was generated by using an electrochemical approach, and its structure, chemical composition, redox properties, antioxidant activity and effects on cells were characterised. It was found that the nanomaterial possesses a structure dominated by sp carbon atoms in a non-ordered carbon network formed by small clusters (<2 nm) of a carbonaceous material. This material has an outstanding capability for donating electrons and an unusual ability to bind metal cations.
View Article and Find Full Text PDFNanoscale
February 2019
Correction for 'Multifunctional mixed valence N-doped CNT@MFe2O4 hybrid nanomaterials: from engineered one-pot coprecipitation to application in energy storage paper supercapacitors' by Clara Pereira et al., Nanoscale, 2018, 10, 12820-12840.
View Article and Find Full Text PDFThis work reports on the design of novel mixed valence hybrid N-doped carbon nanotubes/metal ferrite nanomaterials (MFe2O4, M(ii) = Mn, Fe, Co) with tailored composition, and magnetic and electrical properties through a straightforward eco-sustainable and less time consuming one-pot in situ coprecipitation process. The potentialities of this strategy rely on the lack of oxidative treatments to the support and thermal annealing, besides the use of aqueous conditions, a chelating base (isopropanolamine) and low temperatures. The process afforded the controlled nucleation/growth of the MFe2O4 nanoparticles (NPs), with sizes of 3.
View Article and Find Full Text PDFNumerous reports have shown that the self-assembling properties of 12-s-12 bis(quaternary ammonium) gemini surfactants in aqueous solution are significantly influenced by s, the number of methylene groups in the covalent spacer. However, the role played by s on the phase behavior of the single compounds has not been investigated in a similarly systematic way. Here, we report on the thermotropic phase behavior of the anhydrous compounds with s = 2-6, 8, 10, and 12, resorting to differential scanning calorimetry (DSC), polarized light microscopy (PLM), and X-ray diffraction (XRD).
View Article and Find Full Text PDFThis work reports the treatment of crystallized-fruit effluents, characterized by a very low biodegradability (BOD5/COD <0.19), through the application of a UV-A LED photo-Fenton process. Firstly, a Box-Behnken design of Response Surface Methodology was applied to achieve the optimal conditions for the UV-A LED photo-Fenton process, trying to maximize the efficiency by saving chemicals and time.
View Article and Find Full Text PDFA series of Cu catalysts supported on Ce1-xSmxOδ mixed oxides with different molar contents (x=0, 0.25, 0.5, 0.
View Article and Find Full Text PDFWe report an innovative strategy to obtain cylindrical nanowires combining well established and low-cost bottom-up methods such as template-assisted nanowires synthesis and electrodeposition process. This approach allows the growth of single-layer or multi-segmented nanowires with precise control over their length (from few nanometers to several micrometers). The employed techniques give rise to branched pores at the bottom of the templates and consequently dendrites at the end of the nanowires.
View Article and Find Full Text PDFAu was loaded (1 wt%) on a commercial MgO support by three different methods: double impregnation, liquid-phase reductive deposition and ultrasonication. Samples were characterised by adsorption of N2 at -96°C, temperature-programmed reduction, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. Upon loading with Au, MgO changed into Mg(OH)2 (the hydroxide was most likely formed by reaction with water, in which the gold precursor was dissolved).
View Article and Find Full Text PDFNiO nanoparticles (NPs) were prepared by a sol-gel process using the citrate route. The sol-gel parameters were tuned to obtain samples with different average particle sizes, ranging from 12 to 70 nm. Magnetic characterization revealed an increase in the blocking temperature with the diameter of the NPs and an increase in the effective magnetic anisotropy (K(eff)) with decreasing particle size.
View Article and Find Full Text PDFThis work reports a detailed investigation about the physicochemical properties of superparamagnetic gamma-Fe(2)O(3) nanomaterial synthesized by the co-precipitation method and coated with two silica shells, and its application as support for the immobilization of oxovanadium(IV) acetylacetonate ([VO(acac)(2)]). The influence of the silica coatings on the surface composition and physicochemical interactions of the core-shell nanocomposites is discussed based on the combination of several techniques: electron microscopy techniques (SEM and TEM with EDS), DLS, powder XRD, XPS, FTIR and magnetic characterization. The identity of the iron oxide, gamma-Fe(2)O(3), was confirmed by XPS, FTIR and by the Rietveld refinement of the PXRD pattern.
View Article and Find Full Text PDF