Int J Environ Res Public Health
December 2020
The use of piles as barriers to mitigate vibrations from rail traffic has been increasing in theoretical and practical engineering during the last years. Tyre-derived aggregate (TDA) is a recycled material with some interesting applications in civil engineering, including those related to railway engineering. As a novelty, this paper combines the concept of pile wave barriers and TDA material and investigates the mitigation effect of pile barriers made of TDA on the vibrations transmitted by rail traffic.
View Article and Find Full Text PDFRailway track support conditions affect ground-borne vibration generation and propagation. Therefore this paper presents a combined experimental and numerical study into high speed rail vibrations for tracks on three types of support: a cutting, an embankment and an at grade section. Firstly, an experimental campaign is undertaken where vibrations and in-situ soil properties are measured at three Belgian rail sites.
View Article and Find Full Text PDFThe present paper focuses on the experimental validation of a numerical approach previously proposed by the authors for the prediction of vibrations inside buildings due to railway traffic in tunnels. The numerical model is based on the concept of dynamic substructuring and is composed by three autonomous models to simulate the following main parts of the problem: i) generation of vibrations (train-track interaction); ii) propagation of vibrations (track-tunnel-ground system); iii) reception of vibrations (building coupled to the ground). The experimental validation consists in the comparison between the results predicted by the proposed numerical model and the measurements performed inside a building due to the railway traffic in a shallow tunnel located in Madrid.
View Article and Find Full Text PDF