Background: The information of electromyographic signals can be used by Myoelectric Control Systems (MCSs) to actuate prostheses. These devices allow the performing of movements that cannot be carried out by persons with amputated limbs. The state of the art in the development of MCSs is based on the use of individual principal component analysis (iPCA) as a stage of pre-processing of the classifiers.
View Article and Find Full Text PDFBackground: Two-dimensional echocardiography (2D-echo) allows the evaluation of cardiac structures and their movements. A wide range of clinical diagnoses are based on the performance of the left ventricle. The evaluation of myocardial function is typically performed by manual segmentation of the ventricular cavity in a series of dynamic images.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
April 2010
We present a new preprocessing technique for two-dimensional compression of surface electromyographic (S-EMG) signals, based on correlation sorting. We show that the JPEG2000 coding system (originally designed for compression of still images) and the H.264/AVC encoder (video compression algorithm operating in intraframe mode) can be used for compression of S-EMG signals.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2008
Despite the growing interest in the transmission and storage of electromyographic signals for long periods of time, only a few studies dealt with the compression of these signals. In this article we propose a novel algorithm for EMG signal compression using the wavelet transform. For EMG signals acquired during isometric contractions, the proposed algorithm provided compression factors ranging from 50 to 90%, with an average PRD ranging from 1.
View Article and Find Full Text PDF