Publications by authors named "Pedram Tootoonchian"

The specific ion effect (SIE), the control of polymer solubility in aqueous solutions by the added ions, has been a phenomenon known for more than a century. The seemingly simple nature of the ion-polymer-water interactions can lead to complex behaviors, which have also been exploited in many applications in biochemistry, electrochemistry, and energy harvesting. Here, we show an emerging diversification of actuation behaviors in "salty" hydrogel and hydrogel-paper actuators.

View Article and Find Full Text PDF

Pattern formation is a frequent phenomenon occurring in animate and inanimate systems. The interplay between the mass transport of the chemical species and the underlying chemical reaction networks generates most patterns in chemical systems. Periodic precipitation is an emblematic example of reaction-diffusion patterns, in which the process generates a spatial periodic structure in porous media.

View Article and Find Full Text PDF

Liesegang patterns that develop as a result of reaction-diffusion can simultaneously form products with slightly different sizes spatially separated in a single medium. We show here a reaction-diffusion method using a dormant reagent (citrate) for developing Liesegang patterns of cobalt hexacyanoferrate Prussian Blue analog (PBA) particle libraries. This method slows the precipitation reaction and produces different-sized particles in a gel medium at different locations.

View Article and Find Full Text PDF

In nature, nonequilibrium systems reflect environmental changes, and these changes are often "recorded" in their solid body as they develop. Periodic precipitation patterns, aka Liesegang patterns (LPs), are visual sums of complex events in nonequilibrium reaction-diffusion processes. Here we aim to achieve an artificial system that "records" the temperature changes in the environment with the concurrent LP formation.

View Article and Find Full Text PDF

CuFeO/CeO as a novel catalyst was synthesized and its catalytic performance was evaluated for electro-Fenton degradation of acid orange 7 (AO7). It was demonstrated from the characterization results that the rhombohedral structure of CuFeO and face-centered cubic fluorite structure of CeO remained stable after nanocomposite construction. The impact of such operating parameters as pH, current intensity and, catalyst amount was investigated and the optimum conditions (100 mgL AO7, pH 3, 150 mgL CuFeO/CeO, I: 150 mA) determination led to 99.

View Article and Find Full Text PDF