This study presents the comprehensive design and performance validation of a wind tunnel specifically developed for advanced investigations into respirable dust deposition pertinent to coal mining environments. The design integrates a constant particle delivery system engineered to maintain uniform particle dispersion, which is critical for replicating real-world conditions in coal mines. Our methodology involved using ANSYS Fluent for the design and optimization of a blowing-type wind tunnel, with a focus on controlling turbulence levels and minimizing pressure drops, which are crucial for accurate dust behaviour simulation.
View Article and Find Full Text PDFObjective: To investigate the feasibility of predicting the risk of underground coal mine operations using data from the National Institute for Occupational Safety and Health (NIOSH).
Methods: A total of 22,068 data entries from 3,982 unique underground coal mines from 1990 to 2020 were extracted from the NIOSH mine employment database. We defined the risk index of a mine as the ratio between the number of injuries and the size of the mine.
Dust is an inherent byproduct of mining activities that raises notable health and safety concerns. Cumulative inhalation of respirable coal mine dust (RCMD) and respirable crystalline silica (RCS) can lead to obstructive lung diseases. Despite considerable efforts to reduce dust exposure by decreasing the permissible exposure limits (PEL) and improving the monitoring techniques, the rate of mine workers with respiratory diseases is still high.
View Article and Find Full Text PDFBackground: A detailed evaluation of the underground mine climate requires extensive measurements to be performed coupled to climatic modeling work. This can be labor-intensive and time-consuming, and consequently impractical for daily work comfort assessments. Therefore, a simple indicator like a heat stress index is needed to enable a quick, valid, and acceptable evaluation of underground climatic conditions on a regular basis.
View Article and Find Full Text PDFBackground: Work comfort studies have been extensively conducted, especially in the underground and meteorological fields resulting in an avalanche of recommendations for their evaluation. Nevertheless, no known or universally accepted model for comprehensively assessing the thermal work condition of the underground mine environment is currently available. Current literature presents several methods and techniques, but none of these can expansively assess the underground mine environment since most methods consider only one or a few defined factors and neglect others.
View Article and Find Full Text PDF