Publications by authors named "Pedetti S"

Wine chemistry inspires and challenges with its complexity and intriguing composition. In this context, the composites based on the use of a model protein, a polyphenol of interest and montmorillonite in a model hydroalcoholic solution have been studied. A set of experimental characterization techniques highlighted the interactions between the organic and the inorganic parts in the composite.

View Article and Find Full Text PDF

Resonant acoustic modes from ultrathin CdS colloidal nanoplatelets (NPLs) are probed under high pressure using low frequency Raman spectroscopy. In particular we focus on the characterization of the recently evidenced mass load effect that is responsible for a significant downshift of the NPL breathing frequency due to the inert mass of organic ligands. We show that a key parameter in the observation of the mass effect is whether the surrounding medium is able to support THz acoustic wave propagation, at a frequency close to that of the inorganic vibrating core.

View Article and Find Full Text PDF

In this article we study the ultrafast dynamics of excitons and charge carriers photogenerated in two-dimensional in-plane heterostructures, namely, CdSe-CdTe nanoplatelets. We combine transient absorption and two-dimensional electronic spectroscopy to study charge transfer and delocalization from a few tens of femtoseconds to several nanoseconds. In contrast with spherical nanocrystals, the relative alignment of the electron and hole states of CdSe and CdTe in thin 2D nanoplatelets does not lead to a type-II heterostructure.

View Article and Find Full Text PDF

Recently developed two-dimensional colloidal semiconductor nanocrystals, or nanoplatelets (NPLs), extend the palette of solution-processable free-standing 2D nanomaterials of high performance. Growing CdSe and CdS parts subsequently in either side-by-side or stacked manner results in core-crown or core/shell structures, respectively. Both kinds of heterogeneous NPLs find efficient applications and represent interesting materials to study the electronic and lattice excitations and interaction between them under strong one-directional confinement.

View Article and Find Full Text PDF

Resonant acoustic modes of ultrathin CdS and CdSe colloidal nanoplatelets (NPLs) with varying thicknesses were probed using low frequency Raman scattering. The spectra are dominated by an intense band ascribed to the thickness breathing mode of the 2D nanostructures. The measured Raman frequencies show strong deviations with respect to the values expected for simple bare plates, all the more so as the thickness is reduced.

View Article and Find Full Text PDF

Cadmium chalcogenide nanoplatelet (NPL) synthesis has recently witnessed a significant advance in the production of more elaborate structures such as core/shell and core/crown NPLs. However, controlled doping in these structures has proved difficult because of the restrictive synthetic conditions required for 2D anisotropic growth. Here, we explore the incorporation of tellurium (Te) within CdSe NPLs with Te concentrations ranging from doping to alloying.

View Article and Find Full Text PDF

Luminescent colloidal CdSe nanoplatelets with atomically defined thicknesses have recently been developed, and their potential for various applications has been shown. To understand their special properties, experiments have until now focused on the relatively short time scales of at most a few nanoseconds. Here, we measure the photoluminescence decay dynamics of colloidal nanoplatelets on time scales up to tens of microseconds.

View Article and Find Full Text PDF

The near-field Coulomb interaction between a nanoemitter and a graphene monolayer results in strong Förster-type resonant energy transfer and subsequent fluorescence quenching. Here, we investigate the distance dependence of the energy transfer rate from individual, (i) zero-dimensional CdSe/CdS nanocrystals and (ii) two-dimensional CdSe/CdS/ZnS nanoplatelets to a graphene monolayer. For increasing distances d, the energy transfer rate from individual nanocrystals to graphene decays as 1/d(4).

View Article and Find Full Text PDF

CONSPECTUS: Semiconductors are at the basis of electronics. Up to now, most devices that contain semiconductors use materials obtained from a top down approach with semiconductors grown by molecular beam epitaxy or chemical vapor deposition. Colloidal semiconductor nanoparticles have been synthesized for more than 30 years now, and their synthesis is becoming mature enough that these nanoparticles have started to be incorporated into devices.

View Article and Find Full Text PDF

The nature and decay dynamics of photoexcited states in CdSe core-only and CdSe/CdS core/shell nanoplatelets was studied. The photophysical species produced after ultrafast photoexcitation are studied using a combination of time-resolved photoluminescence (PL), transient absorption (TA), and terahertz (THz) conductivity measurements. The PL, TA, and THz exhibit very different decay kinetics, which leads to the immediate conclusion that photoexcitation produces different photophysical species.

View Article and Find Full Text PDF

We have synthesized atomically flat CdSe/CdTe core/crown nanoplatelets (NPLs) with thicknesses of 3, 4, and 5 monolayers with fine control of the crown lateral dimensions. In these type-II NPLs, the charges separate spatially, and the electron wave function is localized in the CdSe core while the hole wave function is confined in the CdTe crown. The exciton's recombination occurs across the heterointerface, and as a result of their spatially indirect band gap, an important emission red shift up to the near-infrared region (730 nm) is observed with long fluorescence lifetimes that range from 30 to 860 ns, depending on the type of interface between the core and the crown.

View Article and Find Full Text PDF

The optical and optoelectronic properties of colloidal quantum dots strongly depend on the passivation of their surface. Surface states are however difficult to quantify using optical spectroscopy and techniques based on back gated field effect transistors are limited in the range of carrier density that can be probed, usually significantly below one charge carrier per particle. Here we show that electrolyte gating can be used to quantitatively analyze the increase of defects in a population of nanoparticles with increasing surface irregularities.

View Article and Find Full Text PDF

Free standing two-dimensional materials appear as a novel class of structures. Recently, the first colloidal two-dimensional heterostructures have been synthesized. These core/shell nanoplatelets are the first step toward colloidal quantum wells.

View Article and Find Full Text PDF

A novel α-oximation reaction of unactivated aldehydes has been achieved in excellent yields by reaction with NaNO(2)-FeCl(3) couple and in the presence of pyrrolidine as organocatalyst.

View Article and Find Full Text PDF