Publications by authors named "Pederson R"

Objective: The objective of this review was to map the available evidence regarding the scope of child life specialist services, practice, and utilization.

Introduction: The concept of child life services began in 1922 and emerged as the child life specialist services specialty in the United States in the 1970s and 1980s. Child life specialists are members of multidisciplinary health care system teams who prioritize the developmental needs of pediatric patients to support and improve patient and family health care experiences.

View Article and Find Full Text PDF

The effect of defects and microstructure on the mechanical properties of Ti-6Al-4V welds produced by tungsten inert gas welding; plasma arc welding; electron beam welding; and laser beam welding was studied in the present work. The mechanical properties of different weld types were evaluated with respect to micro hardness; yield strength; ultimate tensile strength; ductility; and fatigue at room temperature and at elevated temperatures (200 °C and 250 °C). Metallographic investigation was carried out to characterize the microstructures of different weld types, and fractographic investigation was conducted to relate the effect of defects on fatigue performance.

View Article and Find Full Text PDF

Creating a successful small molecule drug is a challenging multiparameter optimization problem in an effectively infinite space of possible molecules. Generative models have emerged as powerful tools for traversing data manifolds composed of images, sounds, and text and offer an opportunity to dramatically improve the drug discovery and design process. To create generative optimization methods that are more useful than brute-force molecular generation and filtering via virtual screening, we propose that four integrated features are necessary: large, quantitative data sets of molecular structure and activity, an invertible vector representation of realistic accessible molecules, smooth and differentiable regressors that quantify uncertainty, and algorithms to simultaneously optimize properties of interest.

View Article and Find Full Text PDF

Exact conditions have long been used to guide the construction of density functional approximations. However, hundreds of empirical-based approximations tailored for chemistry are in use, of which many neglect these conditions in their design. We analyze well-known conditions and revive several obscure ones.

View Article and Find Full Text PDF

EU member countries and the UK are currently installing numerous offshore windfarms (OWFs) in the Baltic and North Seas to achieve decarbonization of their energy systems. OWFs may have adverse effects on birds; however, estimates of collision risks and barrier effects for migratory species are notably lacking, but are essential to inform marine spatial planning. We therefore compiled an international dataset consisting of 259 migration tracks for 143 Global Positioning System-tagged Eurasian curlews (Numenius arquata arquata) from seven European countries recorded over 6 years, to assess individual response behaviors when approaching OWFs in the North and Baltic Seas at two different spatial scales (i.

View Article and Find Full Text PDF

Atom probe tomography (APT) was utilized to supplement scanning electron microscopy (SEM) characterization of a precipitation strengthening nickel-based superalloy, Alloy 247LC, processed by laser powder bed fusion (L-PBF). It was observed that the material in the as-built condition had a relatively high strength. Using both SEM and APT, it was concluded that the high strength was not attributed to the typical precipitation strengthening effect of γ'.

View Article and Find Full Text PDF

Mathematical models rooted in network representations are becoming increasingly more common for capturing a broad range of phenomena. Boolean networks (BNs) represent a mathematical abstraction suited for establishing general theory applicable to such systems. A key thread in BN research is developing theory that connects the structure of the network and the local rules to phase space properties or so-called structure-to-function theory.

View Article and Find Full Text PDF

We demonstrate the use of Googles cloud-based Tensor Processing Units (TPUs) to accelerate and scale up conventional (cubic-scaling) density functional theory (DFT) calculations. Utilizing 512 TPU cores, we accomplish the largest such DFT computation to date, with 247848 orbitals, corresponding to a cluster of 10327 water molecules with 103270 electrons, all treated explicitly. Our work thus paves the way toward accessible and systematic use of conventional DFT, free of any system-specific constraints, at unprecedented scales.

View Article and Find Full Text PDF

Objective: The objective of this review is to map the available evidence regarding the scope of child life specialist practice and utilization.

Introduction: Child life specialists provide developmentally appropriate and emotion-focused supportive interventions that aim to build coping skills, enhance resilience, and mitigate traumatic experiences during health care encounters. Evidence of the care provided by a child life specialist is spread throughout health care literature.

View Article and Find Full Text PDF
Article Synopsis
  • The study evaluates the high-temperature tensile properties of Ti-6Al-4V created through electron beam melting (EBM) and subjected to low-temperature hot isostatic pressing (HIP) at 800 °C.
  • Metallurgical analysis shows no significant difference in β grain width between as-built and HIP-treated samples, but the standard HIP-treated materials had broader α laths compared to those from the modified HIP treatment.
  • Yield strength significantly decreased at elevated temperatures, with a 10-14% lower yield strength in standard HIP-treated materials and a reduction to about 65% of room-temperature strength at 350 °C; however, ductility increased at 150 °C before declining at higher temperatures.
View Article and Find Full Text PDF

Kohn-Sham regularizer (KSR) is a differentiable machine learning approach to finding the exchange-correlation functional in Kohn-Sham density functional theory that works for strongly correlated systems. Here we test KSR for a weak correlation. We propose spin-adapted KSR (sKSR) with trainable local, semilocal, and nonlocal approximations found by minimizing density and total energy loss.

View Article and Find Full Text PDF

Alloy 21-6-9 is an austenitic stainless steel with high strength, thermal stability at high temperatures, and retained toughness at cryogenic temperatures. This type of steel has been used for aerospace applications for decades, using traditional manufacturing processes. However, limited research has been conducted on this alloy manufactured using laser powder-bed fusion (LPBF) Therefore, in this work, a design of experiment (DOE) was performed to obtain optimized process parameters with regard to low porosity.

View Article and Find Full Text PDF

Including prior knowledge is important for effective machine learning models in physics and is usually achieved by explicitly adding loss terms or constraints on model architectures. Prior knowledge embedded in the physics computation itself rarely draws attention. We show that solving the Kohn-Sham equations when training neural networks for the exchange-correlation functional provides an implicit regularization that greatly improves generalization.

View Article and Find Full Text PDF

Density functional calculations can fail for want of an accurate exchange-correlation approximation. The energy can instead be extracted from a sequence of density functional calculations of conditional probabilities (CP DFT). Simple CP approximations yield usefully accurate results for two-electron ions, the hydrogen dimer, and the uniform gas at all temperatures.

View Article and Find Full Text PDF

Additive manufacturing of Alloy 718 has become a popular subject of research in recent years. Understanding the process-microstructure-property relationship of additively manufactured Alloy 718 is crucial for maturing the technology to manufacture critical components. Fatigue behaviour is a key mechanical property that is required in applications such as gas turbines.

View Article and Find Full Text PDF

The manufacturing of parts from nickel-based superalloy Alloy 247LC by laser powder bed fusion (L-PBF) is challenging, primarily owing to the alloy's susceptibility to cracks. Apart from the cracks, voids created during the L-PBF process should also be minimized to produce dense parts. In this study, samples of Alloy 247LC were manufactured by L-PBF, several of which could be produced with voids and crack density close to zero.

View Article and Find Full Text PDF

Electron beam freeform fabrication is a wire feed direct energy deposition additive manufacturing process, where the vacuum condition ensures excellent shielding against the atmosphere and enables processing of highly reactive materials. In this work, this technique is applied for the α + β-titanium alloy Ti-6Al-4V to determine suitable process parameter for robust building. The correlation between dimensions and the dilution of single beads based on selected process parameters, leads to an overlapping distance in the range of 70%-75% of the bead width, resulting in a multi-bead layer with a uniform height and with a linear build-up rate.

View Article and Find Full Text PDF

Hyaline cartilage lining the surfaces of diarthrodial joints is an important construct for transmission of load and to reduce friction between the bones. Normal wear and tear accounts for about 3-5 percent knee cartilage loss ever year in otherwise healthy people after the age of 30 years. Several conditions and diseases lead to premature cartilage degeneration.

View Article and Find Full Text PDF

Titanium-based alloys are susceptible to hydrogen embrittlement (HE), a phenomenon that deteriorates fatigue properties. Ti-6Al-4V is the most widely used titanium alloy and the effect of hydrogen embrittlement on fatigue crack growth (FCG) was investigated by carrying out crack propagation tests in air and high-pressure H environment. The FCG test in hydrogen environment resulted in a drastic increase in crack growth rate at a certain Δ K, with crack propagation rates up to 13 times higher than those observed in air.

View Article and Find Full Text PDF

In the present study, the gas tungsten arc welding wire feed additive manufacturing process is simulated and its final microstructure predicted by microstructural modelling, which is validated by microstructural characterization. The Finite Element Method is used to solve the temperature field and microstructural evolution during a gas tungsten arc welding wire feed additive manufacturing process. The microstructure of titanium alloy Ti-6Al-4V is computed based on the temperature evolution in a density-based approach and coupled to a model that predicts the thickness of the α lath morphology.

View Article and Find Full Text PDF

We investigate how different chemical environments influence magnetic properties of terbium(III) (Tb)-based single-molecule magnets (SMMs), using first-principles relativistic multireference methods. Recent experiments showed that Tb-based SMMs can have exceptionally large magnetic anisotropy and that they can be used for experimental realization of quantum information applications, with a judicious choice of chemical environment. Here, we perform complete active space self-consistent field calculations including relativistic spin-orbit interaction for representative Tb-based SMMs such as TbPc and TbPcNc in three charge states.

View Article and Find Full Text PDF

Residual stress/strain and microstructure used in additively manufactured material are strongly dependent on process parameter combination. With the aim to better understand and correlate process parameters used in electron beam melting (EBM) of Ti-6Al-4V with resulting phase distributions and residual stress/strains, extensive experimental work has been performed. A large number of polycrystalline Ti-6Al-4V specimens were produced with different optimized EBM process parameter combinations.

View Article and Find Full Text PDF

We present mathematical techniques for exhaustive studies of long-term dynamics of asynchronous biological system models. Specifically, we extend the notion of [Formula: see text]-equivalence developed for graph dynamical systems to support systematic analysis of all possible attractor configurations that can be generated when varying the asynchronous update order (Macauley and Mortveit in Nonlinearity 22(2):421, 2009). We extend earlier work by Veliz-Cuba and Stigler (J Comput Biol 18(6):783-794, 2011), Goles et al.

View Article and Find Full Text PDF

Alloy 718 finds application in gas turbine engine components, such as turbine disks, compressor blades and so forth, due to its excellent mechanical and corrosion properties at elevated temperatures. Electron beam melting (EBM) is a recent addition to the list of additive manufacturing processes and has shown the capability to produce components with unique microstructural features. In this work, Alloy 718 specimens were manufactured using the EBM process with a single batch of virgin plasma atomized powder.

View Article and Find Full Text PDF

Human induced pluripotent stem cells (iPSCs) have the potential to repair/regenerate smooth muscle cells (SMCs) in different organs. However, there are many challenges in their translation to clinical therapies. In this study, we describe our observations of in vitro SMC differentiation in three iPSC lines derived from human fibroblasts using retroviral, episomal, and mRNA/miRNA reprogramming methods.

View Article and Find Full Text PDF