The human tympanic membrane (TM) has a thin outer epidermal layer which plays an important role in TM homeostasis and ear health. The specialised cells of the TM epidermis have a different physiology compared to normal skin epidermal keratinocytes, displaying a dynamic and constitutive migration that maintains a clear TM surface and assists in regeneration. Here, we characterise and compare molecular phenotypes in keratinocyte cultures from TM and normal skin.
View Article and Find Full Text PDFStem cell therapies for tympanic membrane repair have shown initial experimental success using mesenchymal stem cells in rat models to promote healing; however, the mechanisms providing this benefit are not known. We investigated in vitro the paracrine effects of human adipose-derived stem cells (ADSCs) on wound healing mechanisms for human tympanic membrane-derived keratinocytes (hTM) and immortalized human keratinocytes (HaCaT). ADSC conditioned media (CM) were assessed for paracrine activity on keratinocyte proliferation and migration, with hypoxic conditions for ADSC culture used to generate contrasting effects on cytokine gene expression.
View Article and Find Full Text PDFCultured epidermal cell sheets (CECS) are used in regenerative medicine in patients with burns, and have potential to treat limbal stem cell deficiency (LSCD), as demonstrated in animal models. Despite widespread use, short-term storage options for CECS are limited. Advantages of storage include: flexibility in scheduling surgery, reserve sheets for repeat operations, more opportunity for quality control, and improved transportation to allow wider distribution.
View Article and Find Full Text PDFIntroduction: There is increasing evidence that retinal pigment epithelium (RPE) can be used to treat age-related macular degeneration, one of the leading causes of blindness worldwide. However, the best way to store RPE to enable worldwide distribution is unknown. We investigated the effects of supplementing our previously published storage method with seven additives, attempting to improve the number of viable adult retinal pigment epithelial (ARPE)-19 cells after storage.
View Article and Find Full Text PDFPurpose. The establishment of future retinal pigment epithelium (RPE) replacement therapy is partly dependent on the availability of tissue-engineered RPE cells, which may be enhanced by the development of suitable storage methods for RPE. This study investigates the effect of different storage temperatures on the viability, morphology, and phenotype of cultured RPE.
View Article and Find Full Text PDF