In recent years, there has been growing interest in the development of metal-free, environmentally friendly, and cost-effective biopolymer-based piezoelectric strain sensors (bio-PSSs) for flexible applications. In this study, we have developed a bio-PSS based on pure deoxyribonucleic acid (DNA) and curcumin materials in a thin-film form and studied its strain-induced current-voltage characteristics based on piezoelectric phenomena. The bio-PSS exhibited flexibility under varying compressive and tensile loads.
View Article and Find Full Text PDFIt is essential to understand the barrier height, ideality factor, and role of inhomogeneities at the metal/semiconductor interfaces in nanowires for the development of next generation nanoscale devices. Here, we investigate the drain current ()-gate voltage () characteristics of GaN nanowire wrap-gate transistors (WGTs) for various gate potentials in the wide temperature range of 130-310 K. An anomalous reduction in the experimental barrier height and rise in the ideality factor with reducing the temperature have been perceived.
View Article and Find Full Text PDFWe used capacitance-voltage (-), conductance-voltage (-), and noise measurements to examine the carrier trap mechanisms at the surface/core of an AlGaN/GaN nanowire wrap-gate transistor (WGT). When the frequency is increased, the predicted surface trap density promptly drops, with values ranging from 9.1 × 10 eV∙cm at 1 kHz to 1.
View Article and Find Full Text PDFFor the creation of next-generation nanoscale devices, it is crucial to comprehend the carrier transport mechanisms in nanowires. Here, we examine how temperature affects the properties of GaN nanowire wrap-gate transistors (WGTs), which are made via a top-down technique. The predicted conductance in this transistor remains essentially unaltered up to a temperature of 240 K and then increases after that as the temperature rises.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2020