Publications by authors named "Pedchenko V"

Collagen IV scaffold is a primordial innovation enabling the assembly of a fundamental architectural unit of epithelial tissues-a basement membrane attached to polarized cells. A family of six α-chains (α1 to α6) coassemble into three distinct protomers that form supramolecular scaffolds, noted as collagen IV, collagen IV, and collagen IV. Chloride ions play a pivotal role in scaffold assembly, based on studies of NC1 hexamers from mammalian tissues.

View Article and Find Full Text PDF

We identified a genetic variant, an 8-residue appendage, of the α345 hexamer of collagen IV present in patients with glomerular basement membrane diseases, Goodpasture's disease and Alport syndrome, and determined the long-awaited crystal structure of the hexamer. We sought to elucidate how variants cause glomerular basement membrane disease by exploring the mechanism of the hexamer assembly. Chloride ions induced in vitro hexamer assembly in a composition-specific manner in the presence of equimolar concentrations of α3, α4, and α5 NC1 monomers.

View Article and Find Full Text PDF

Diseases of the glomerular basement membrane (GBM), such as Goodpasture's disease (GP) and Alport syndrome (AS), are a major cause of chronic kidney failure and an unmet medical need. Collagen IV is an important architectural element of the GBM that was discovered in previous research on GP and AS. How this collagen enables GBM to function as a permselective filter and how structural defects cause renal failure remain an enigma.

View Article and Find Full Text PDF

Goodpasture's disease (GP) is mediated by autoantibodies that bind the glomerular and alveolar basement membrane, causing rapidly progressive glomerulonephritis with or without pulmonary hemorrhage. The autoantibodies bind neoepitopes formed upon disruption of the quaternary structure of α345NC1 hexamer, a critical structural domain of α345 collagen IV scaffolds. Hexamer disruption leads to a conformational changes that transitions α3 and α5NC1 subunits into immunogens, however, the trigger remains unknown.

View Article and Find Full Text PDF

Background: The discoidin domain receptor 1 (DDR1) is activated by collagens, upregulated in injured and fibrotic kidneys, and contributes to fibrosis by regulating extracellular matrix production, but how DDR1 controls fibrosis is poorly understood. DDR1 is a receptor tyrosine kinase (RTK). RTKs can translocate to the nucleus a nuclear localization sequence (NLS) present on the receptor itself or a ligand it is bound to.

View Article and Find Full Text PDF
Article Synopsis
  • Collagen IV scaffold is a key component of the basement membrane that supports multicellularity and tissue evolution, beginning with the assembly of protochains inside cells and their subsequent secretion.
  • The study focuses on how chloride ions facilitate the assembly of collagen IV protomers into stable hexamers through a noncollagenous domain (NC1), which is essential for structural integrity.
  • Findings reveal that a specific chloride ring stabilizes the hexamer structure and is conserved throughout evolutionary history, providing insights for future research into collagen scaffolds and potential therapies for related diseases.
View Article and Find Full Text PDF

Background: Goodpasture syndrome (GP) is a pulmonary-renal syndrome characterized by autoantibodies directed against the NC1 domains of collagen IV in the glomerular and alveolar basement membranes. Exposure of the cryptic epitope is thought to occur disruption of sulfilimine crosslinks in the NC1 domain that are formed by peroxidasin-dependent production of hypobromous acid. Peroxidasin, a heme peroxidase, has significant structural overlap with myeloperoxidase (MPO), and MPO-ANCA is present both before and at GP diagnosis in some patients.

View Article and Find Full Text PDF

Goodpasture's (GP) disease is an autoimmune disorder characterized by the deposition of pathogenic autoantibodies in basement membranes of kidney and lung eliciting rapidly progressive glomerulonephritis and pulmonary hemorrhage. The principal autoantigen is the α345 network of collagen IV, which expression is restricted to target tissues. Recent discoveries include a key role of chloride and bromide for network assembly, a novel posttranslational modification of the antigen, a sulfilimine bond that crosslinks the antigen, and the mechanistic role of HLA in genetic susceptibility and resistance to GP disease.

View Article and Find Full Text PDF

Collagen IV is a major constituent of basement membranes, specialized form of extracellular matrix that provides a mechanical support for tissues, serves as a polyvalent ligand for cell adhesion receptors and as a scaffold for other proteins, and plays a key role in tissue genesis, differentiation, homeostasis, and remodeling. Collagen IV underlies the pathogenesis of several human disorders including Goodpasture's disease, Alport's syndrome, diabetic nephropathy, angiopathy, and porencephaly. While the isolation of the collagen IV molecules from tissues is an ultimate prerequisite for structural and functional studies, it has been always hampered by the protein insolubility due to extensive intermolecular crosslinking and noncovalent associations with other components of basement membranes.

View Article and Find Full Text PDF

The role of the cellular microenvironment in enabling metazoan tissue genesis remains obscure. Ctenophora has recently emerged as one of the earliest-branching extant animal phyla, providing a unique opportunity to explore the evolutionary role of the cellular microenvironment in tissue genesis. Here, we characterized the extracellular matrix (ECM), with a focus on collagen IV and its variant, spongin short-chain collagens, of non-bilaterian animal phyla.

View Article and Find Full Text PDF

Basement membranes are defining features of the cellular microenvironment; however, little is known regarding their assembly outside cells. We report that extracellular Cl(-) ions signal the assembly of collagen IV networks outside cells by triggering a conformational switch within collagen IV noncollagenous 1 (NC1) domains. Depletion of Cl(-) in cell culture perturbed collagen IV networks, disrupted matrix architecture, and repositioned basement membrane proteins.

View Article and Find Full Text PDF

Autoantibody against glomerular basement membrane (GBM) plays a direct role in the initiation and development of Goodpasture's (GP) disease. The principal autoantigen is the non-collagenous domain 1 (NC1) of α3 chain of collagen IV, with two immunodominant epitopes, EA-α3 and EB-α3. We recently demonstrated that antibodies targeting α5NC1 are bound to kidneys in GP patients, suggesting their pathogenic relevance.

View Article and Find Full Text PDF

Basement membrane, a specialized ECM that underlies polarized epithelium of eumetazoans, provides signaling cues that regulate cell behavior and function in tissue genesis and homeostasis. A collagen IV scaffold, a major component, is essential for tissues and dysfunctional in several diseases. Studies of bovine and Drosophila tissues reveal that the scaffold is stabilized by sulfilimine chemical bonds (S = N) that covalently cross-link methionine and hydroxylysine residues at the interface of adjoining triple helical protomers.

View Article and Find Full Text PDF

Human anti-glomerular basement membrane (GBM) disease strongly associates with HLA-DRB1*15:01. The target autoantigen in this disease is the noncollagenous domain of the α3 chain of type IV collagen, α3(IV)NC1, but critical early T cell epitopes presented by this human MHC class II molecule are unknown. Here, by immunizing HLA-DRB1*15:01 transgenic mice with whole recombinant α3(IV)NC1 and with overlapping α3(IV)NC1 peptides, we defined a HLA-DRB1*15:01-restricted α3(IV)NC1 T cell epitope (α3136-146) with four critical residues.

View Article and Find Full Text PDF

Integrin α1β1 binding to collagen IV, which is mediated by the α1-inserted (I) domain, down-regulates collagen synthesis. When unligated, a salt bridge between Arg(287) and Glu(317) is thought to keep this domain in a low affinity conformation. Ligand binding opens the salt bridge leading to a high-affinity conformation.

View Article and Find Full Text PDF

Collagen IV comprises the predominant protein network of basement membranes, a specialized extracellular matrix, which underlie epithelia and endothelia. These networks assemble through oligomerization and covalent crosslinking to endow mechanical strength and shape cell behavior through interactions with cell-surface receptors. A recently discovered sulfilimine (S=N) bond between a methionine sulfur and hydroxylysine nitrogen reinforces the collagen IV network.

View Article and Find Full Text PDF

Nonenzymatic modification of proteins in hyperglycemia is a major mechanism causing diabetic complications. These modifications can have pathogenic consequences when they target active site residues, thus affecting protein function. In the present study, we examined the role of glucose autoxidation in functional protein damage using lysozyme and RGD-α3NC1 domain of collagen IV as model proteins in vitro.

View Article and Find Full Text PDF

The sulphilimine cross-link of the Goodpasture (GP) autoantigen is a novel molecular mechanism (structural constraint) for conferring immune privilege to a site which otherwise is susceptible to structural changes that induce an immunogenic and pathogenic conformation. Perturbation of the assembly or cleavage of the sulphilimine cross-links could be a key factor in the aetiology of Goodpasture's disease in susceptible individuals.

View Article and Find Full Text PDF

Purpose Of Review: Goodpasture's disease is an autoimmune disorder characterized by the deposition of pathogenic autoantibodies in basement membranes of kidney and lung, which induces rapidly progressive glomerulonephritis and pulmonary hemorrhage. The target antigen is the α3NC1 domain of collagen IV, which is expressed in target organs as an α345 network. Recent studies of specificity and epitopes of Goodpasture's autoantibodies and discovery of novel posttranslational modification of the antigen, a sulfilimine bond, provide further insight into mechanisms of initiation and progression of Goodpasture's disease.

View Article and Find Full Text PDF

Collagen IV is the major protein found in basement membranes. It comprises three heterotrimers (α1α1α2, α3α4α5, and α5α5α6) that form distinct networks, and are responsible for membrane strength and integrity.We constructed linear maps of the collagen IV heterotrimers ("interactomes") that indicated major structural landmarks, known and predicted ligand-binding sites, and missense mutations, in order to identify functional and disease-associated domains, potential interactions between ligands, and genotype–phenotype relationships.

View Article and Find Full Text PDF

Background: In Goodpasture's disease, circulating autoantibodies bind to the noncollagenous-1 (NC1) domain of type IV collagen in the glomerular basement membrane (GBM). The specificity and molecular architecture of epitopes of tissue-bound autoantibodies are unknown. Alport's post-transplantation nephritis, which is mediated by alloantibodies against the GBM, occurs after kidney transplantation in some patients with Alport's syndrome.

View Article and Find Full Text PDF

Proteolysis is essential during branching morphogenesis, but the roles of MT-MMPs and their proteolytic products are not clearly understood. Here, we discover that decreasing MT-MMP activity during submandibular gland branching morphogenesis decreases proliferation and increases collagen IV and MT-MMP expression. Specifically, reducing epithelial MT2-MMP profoundly decreases proliferation and morphogenesis, increases Col4a2 and intracellular accumulation of collagen IV, and decreases the proteolytic release of collagen IV NC1 domains.

View Article and Find Full Text PDF

The detailed structural basis for the cryptic nature (crypticity) of a B cell epitope harbored by an autoantigen is unknown. Because the immune system may be ignorant of the existence of such "cryptic" epitopes, their exposure could be an important feature in autoimmunity. Here we investigated the structural basis for the crypticity of the epitopes of the Goodpasture autoantigen, the alpha3alpha4alpha5 noncollagenous-1 (NC1) hexamer, a globular domain that connects two triple-helical molecules of the alpha3alpha4alpha5 collagen IV network.

View Article and Find Full Text PDF

Podocyte adhesion to the glomerular basement membrane is required for proper function of the glomerular filtration barrier. However, the mechanism whereby podocytes adhere to collagen IV networks, a major component of the glomerular basement membrane, is poorly understood. The predominant collagen IV network is composed of triple helical protomers containing the alpha3alpha4alpha5 chains.

View Article and Find Full Text PDF