Publications by authors named "Pechatnikova E"

In this review paper, we discuss the contribution of proteomic studies to the discovery of disease-specific biomarkers to monitor the disease and evaluate available treatment options for psoriasis. Psoriasis is one of the most prevalent skin disorders driven by a Th17-specific immune response. Although potential patients have a genetic predisposition to psoriasis, the etiology of the disease remains unknown.

View Article and Find Full Text PDF

Kinesin motors power many motile processes by converting ATP energy into unidirectional motion along microtubules. The force-generating and enzymatic properties of conventional kinesin have been extensively studied; however, the structural basis of movement is unknown. Here we have detected and visualized a large conformational change of an approximately 15-amino-acid region (the neck linker) in kinesin using electron paramagnetic resonance, fluorescence resonance energy transfer, pre-steady state kinetics and cryo-electron microscopy.

View Article and Find Full Text PDF

The kinetic mechanism of the nonclaret disjunctional protein (Ncd) motor was investigated using the dimer termed MC1 (residues 209-700), which has been shown to exhibit negative-end directed motility (Chandra et al., 1993). The kinetic properties are similar to those of the monomeric Ncd motor domain (Pechatnikova and Taylor, 1997).

View Article and Find Full Text PDF

The non-claret disjunctional protein (Ncd) is a kinesin-related microtubule motor that moves toward the negative end of microtubules. The kinetic mechanism of the monomer motor domain, residues 335-700, satisfied a simple scheme for the binding of 2'-3'-O-(N-methylanthraniloyl) (MANT) ATP, the hydrolysis step, and the binding and release of MANT ADP, where T, D, and Pi refer to nucleotide triphosphate, nucleotide diphosphate, and inorganic phosphate, respectively, and MtN is the complex of an Ncd motor domain with a microtubule site. Rate constants k1 and k-4 are the rates of a first order step, an isomerization induced by nucleotide binding.

View Article and Find Full Text PDF

ncd is a kinesin-related motor protein from Drosophila that moves in the opposite direction along microtubules to kinesin. To learn more about the ncd mechanism, ncd motor domain (R335-K700) was expressed in Escherichia coli and its enzymatic characteristics were studied. The ncd motor domain was purified from the cell lysate by S-Sepharose chromatography, and trace amounts of contaminants were removed by passing through a MonoQ column.

View Article and Find Full Text PDF

After hypochlorite (OCl-) treatment of the aortic smooth muscle sarcoplasmic reticulum (SR), the membrane microviscosity increases considerably in "bound" lipid regions in comparison with protein-free regions. OCl- induces the inhibition of active and the enhancement of passive calcium transport in SR. Treatment of SR vesicles with Ag+ and then with OCl- (but not in the reverse order) leads to the enhancement of the activating effect of OCl- on passive calcium release from the vesicles.

View Article and Find Full Text PDF

The interaction of the probe diS-C3-(5) with dipalmitoylphosphatidylcholine (DPPC) liposomes has been studied using fluorescence and differential scanning calorimetry (DSC). The partition coefficients (K) of the probe for the lipid and the aqueous phase (in terms of molar part units) were (1.20 +/- 0.

View Article and Find Full Text PDF