Canfieldite, AgSnS, is a semiconducting mineral notable for its high ionic conductivity, photosensitivity, and low thermal conductivity. We report the solution growth of large single crystals of AgSnS of mass up to 1 g from a ternary Ag-Sn-S melt. On cooling from high temperature, AgSnS undergoes a known cubic (4̅3) to orthorhombic (2) phase transition at ≈460 K.
View Article and Find Full Text PDFWe report two new rare-earth (R) ternary intermetallic compounds-HoNiT with T = Si and Ge-that correspond to the RNiT phase earlier reported to form in Dy-Ni-T and Ho-Ni-T ternary systems. The compounds crystallize in a filled version of the orthorhombic ZrNiP-type structure with = 0.52; their stoichiometry, determined from both single-crystal and powder X-ray diffraction data, is centered on HoNiT with a narrow solid solubility range for the silicide, while the germanide appears to be a line phase.
View Article and Find Full Text PDFA new family of heterostructured transition-metal dichalcogenides (TMDCs) with incommensurate ("misfit") spatial arrangements of well-defined layers was prepared from structurally dissimilar single-phase 2H-MoS and 1T-HfS materials. The experimentally observed heterostructuring is energetically favorable over the formation of homogeneous multi-principle element dichalcogenides observed in related dichalcogenide systems of Mo, W, and Ta. The resulting three-dimensional (3D) heterostructures show semiconducting behavior with an indirect band gap around 1 eV, agreeing with values predicted from density functional theory.
View Article and Find Full Text PDFA facile method to produce few-layer graphene (FLG) nanosheets is developed using protein-assisted mechanical exfoliation. The predominant shear forces that are generated in a planetary ball mill facilitate the exfoliation of graphene layers from graphite flakes. The process employs a commonly known protein, bovine serum albumin (BSA), which not only acts as an effective exfoliation agent but also provides stability by preventing restacking of the graphene layers.
View Article and Find Full Text PDFThree-dimensional heterostructures are usually created either by assembling two-dimensional building blocks into hierarchical architectures or using stepwise chemical processes that sequentially deposit individual monolayers. Both approaches suffer from a number of issues, including lack of suitable precursors, limited reproducibility, and poor scalability of the preparation protocols. Therefore, development of alternative methods that enable preparation of heterostructured materials is desired.
View Article and Find Full Text PDFUnique properties of one-dimensional assemblies of particles have attracted great attention during the past decades, particularly with respect to the potential for anisotropic magnetism. Patterned films can be created using inkjet printing; however, drying of particle-laden colloidal droplets on solid surfaces is usually accompanied by the well-known coffee-ring effect, deteriorating both the uniformity and resolution of the printed configurations. This study examines the effect of externally applied magnetic field on particle deposition patterns.
View Article and Find Full Text PDFA systematic study of the physical properties and microscopic magnetism of NdPd compound, which in the paramagnetic state crystallizes in the non-centrosymmetric hexagonal ThFe-type structure (hP20-P6 mc; with a = 10.1367(1) Å and c = 6.3847(1) Å at 300 K), confirms multiple magnetic ordering transitions that occur upon cooling.
View Article and Find Full Text PDFTransition metal dichalcogenides combining multiple principal elements in their structures are synthesized via mechanochemical exfoliation and spontaneous reassembly of binary precursors into 3D-heterostructures that are converted into single-phase layered materials by high-temperature reactive fusion. Physical and chemical events enabling these transformations are summarized in the form of a conceivable reaction mechanism.
View Article and Find Full Text PDFFirst-order magnetic transitions (FOMTs) with a large discontinuity in magnetization are highly sought in the development of advanced functional magnetic materials. Isosymmetric magnetoelastic FOMTs that do not perturb crystal symmetry are especially rare, and only a handful of material families, almost exclusively transition metal-based, are known to exhibit them. Yet, here we report a surprising isosymmetric FOMT in a rare-earth intermetallic, EuIn.
View Article and Find Full Text PDFThree metal-organic framework (MOF) compounds, Ln0.5Gd0.5{C6H3(COO)3}; Ln = Eu, Tb, and Dy with a MIL-78 structure, have been synthesized by a solvent-free mechanochemical method from stoichiometric mixtures of benzene 1,3,5-tricarboxylic acid, C6H3(COOH)3, also known as trimesic acid, and the respective lanthanide carbonates, Ln2(CO3)3·xH2O, Ln = Eu, Gd, Tb and Dy.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2017
Experimental investigations of crystal structure, magnetism and heat capacity of compounds in the pseudoternary GdScGe-GdScSb system combined with density functional theory projections have been employed to clarify the interplay between the crystal structure and magnetism in this series of RTX materials (R = rare-earth, [Formula: see text] = transition metal and X = p-block element). We demonstrate that the CeScSi-type structure adopted by GdScGe and CeFeSi-type structure adopted by GdScSb coexist over a limited range of compositions [Formula: see text]. Antimony for Ge substitutions in GdScGe result in an anisotropic expansion of the unit cell of the parent that is most pronounced along the c axis.
View Article and Find Full Text PDFTwo borophosphates, (NH)M(HO)(BPO)·yHO with M = Mn (I) and Co (II), synthesized hydrothermally crystallize in enantiomorphous space groups P622 and P622 with a = 9.6559(3) and 9.501(3) Å, c = 15.
View Article and Find Full Text PDFA new series of intermetallic compounds RAuPn (R = Y, Gd-Tm; Pn = Sb, Bi) has been discovered during the explorations of the Au-rich parts of rare-earth-containing ternary systems with p-block elements. The existence of the series is strongly restricted by both geometric and electronic factors. RAuPn compounds crystallize in the hexagonal crystal system with space group P6/m (a = 8.
View Article and Find Full Text PDFAlane (AlH3 ) is a unique energetic material that has not found a broad practical use for over 70 years because it is difficult to synthesize directly from its elements. Using density functional theory, we examine the defect-mediated formation of alane monomers on Al(111) in a two-step process: (1) dissociative adsorption of H2 and (2) alane formation, which are both endothermic on a clean surface. Only with Ti dopant to facilitate H2 dissociation and vacancies to provide Al adatoms, both processes become exothermic.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
August 2016
Caloric cooling and heat pumping rely on reversible thermal effects triggered in solids by magnetic, electric or stress fields. In the recent past, there have been several successful demonstrations of using first-order phase transition materials in laboratory cooling devices based on both the giant magnetocaloric and elastocaloric effects. All such materials exhibit non-equilibrium behaviours when driven through phase transformations by corresponding fields.
View Article and Find Full Text PDFWe explain a profound complexity of magnetic interactions of some technologically relevant gadolinium intermetallics using an ab initio electronic structure theory which includes disordered local moments and strong f-electron correlations. The theory correctly finds GdZn and GdCd to be simple ferromagnets and predicts a remarkably large increase of Curie temperature with a pressure of +1.5 K kbar(-1) for GdCd confirmed by our experimental measurements of +1.
View Article and Find Full Text PDFThe magnetic properties and magnetic structures of the R 5Ni2In4 and the microfibrous R 11Ni4In9 compounds with R = Tb and Ho have been examined using magnetization, heat capacity, and neutron diffraction data. Rare earth atoms occupy three and five symmetrically inequivalent rare earth sites in R 5Ni2In4 and R 11Ni4In9 compounds, respectively. As a result of the intra- and inter-magnetic sublattice interactions, the magnetic exchange interactions are different for various rare earth sites; this leads to a cascade of magnetic transitions with a strong hierarchy in the temperature dependence of the magnetic orderings.
View Article and Find Full Text PDFFour complex intermetallic compounds BaAu(6±x)Ga(6±y) (x = 1, y = 0.9) (I), BaAu(6±x)Al(6±y) (x = 0.9, y = 0.
View Article and Find Full Text PDFThe magnetic and magnetothermal properties of holmium single crystal have been investigated from 4.2 to 300 K in magnetic fields up to 100 kOe using magnetization and heat capacity data measured along the easy magnetization direction, which is the crystallographic b-axis, i.e.
View Article and Find Full Text PDFReplacement of Dy and substitution of Nd in NdFeB-based permanent magnets by Ce, the most abundant and lowest cost rare earth element, is important because Dy and Nd are costly and critical rare earth elements. The Ce, Co co-doped alloys have excellent high-temperature magnetic properties with an intrinsic coercivity being the highest known for T ≥ 453 K.
View Article and Find Full Text PDFA mechanochemical process for the synthesis of alane (AlH3) starting from lithium hydride (LiH) and aluminium chloride (AlCl3) at room temperature and the underlying reaction pathway have been studied. In contrast to a conventional process using the same two reactants dissolved in diethyl ether, our approach enables a solvent-free synthesis, thereby directly leading to adduct-free alane. The method described here is quick and efficient, resulting in the quantitative conversion of all aluminium in the starting mixture to alane.
View Article and Find Full Text PDFJ Phys Condens Matter
October 2014
In this paper we demonstrate evidence of a cluster spin glass in Tb₁₁₇Fe₅₂Ge₁₁₃.₈(₁) (a compound with a giant cubic unit cell) via ac and dc magnetic susceptibility, magnetization, magnetic relaxation and heat capacity measurements. The results clearly show that Tb₁₁₇Fe₅₂Ge₁₁₃.
View Article and Find Full Text PDFThe magnetic and magnetothermal properties of a high purity terbium single crystal have been re-investigated from 1.5 to 350 K in magnetic fields ranging from 0 to 75 kOe using magnetization, ac magnetic susceptibility and heat capacity measurements. The magnetic phase diagram has been refined by establishing a region of the fan-like phase broader than reported in the past, by locating a tricritical point at 226 K, and by a more accurate definition of the critical fields and temperatures associated with the magnetic phases observed in Tb.
View Article and Find Full Text PDFRare-earth materials, due to their unique magnetic properties, are important for fundamental and technological applications such as advanced magnetic sensors, magnetic data storage, magnetic cooling and permanent magnets. For an understanding of the physical behaviors of these materials, first principles techniques are one of the best theoretical tools to explore the electronic structure and evaluate exchange interactions. However, first principles calculations of the crystal field splitting due to intra-site electron-electron correlations and the crystal environment in the presence of exchange splitting in rare-earth materials are rarely carried out despite the importance of these effects.
View Article and Find Full Text PDF