Publications by authors named "Pechan T"

Article Synopsis
  • The actin cytoskeleton and a molecule called reactive oxygen species help root hairs grow properly.
  • Two specific mutant plants, rhd2-1 and der1-3, have problems with root hair growth because of issues with proteins called AtRBOHC/RHD2 and ACTIN 2.
  • These mutants respond differently to drought: rhd2-1 struggles with drought stress, while der1-3 is more resistant, because of differences in how their proteins behave.
View Article and Find Full Text PDF

is the causative agent of listeriosis, a severe foodborne illness characterized by septicemia, meningitis, encephalitis, abortions, and occasional death in infants and immunocompromised individuals. is composed of four genetic lineages (I, II, III, and IV) and fourteen serotypes. The aim of the current study was to identify proteins that can serve as biomarkers for detection of genetic lineage III strains based on simple antibody-based methods.

View Article and Find Full Text PDF

The photosynthesis-induced accumulation of reactive oxygen species in chloroplasts can lead to oxidative stress, triggering changes in protein synthesis, degradation, and the assembly/disassembly of protein complexes. Using shot-gun proteomics, we identified methyl viologen-induced changes in protein abundance in wild-type Arabidopsis and oxidative stress-hypersensitive fsd1-1 and fsd1-2 knockout mutants, which are deficient in IRON SUPEROXIDE DISMUTASE 1 (FSD1). The levels of proteins that are localized in chloroplasts and the cytoplasm were modified in all lines treated with methyl viologen.

View Article and Find Full Text PDF

Viroids, a fascinating group of plant pathogens, are subviral agents composed of single-stranded circular noncoding RNAs. It is well-known that nuclear-replicating viroids exploit host DNA-dependent RNA polymerase II (Pol II) activity for transcription from circular RNA genome to minus-strand intermediates, a classic example illustrating the intrinsic RNA-dependent RNA polymerase activity of Pol II. The mechanism for Pol II to accept single-stranded RNAs as templates remains poorly understood.

View Article and Find Full Text PDF

The roles of mitogen-activated protein kinases (MAPKs) in plant-fungal pathogenic interactions are poorly understood in crops. Here, microscopic, phenotypic, proteomic, and biochemical analyses revealed that roots of independent transcription activator-like effector nuclease (TALEN)-based knockout lines of barley (Hordeum vulgare L.) MAPK 3 (HvMPK3 KO) were resistant against Fusarium graminearum infection.

View Article and Find Full Text PDF

The complex composition of the follicular fluid (FF), the intimate proximity to the oocyte, and the continual changes in their composition have a major effect on folliculogenesis and oogenesis. To date, the profiling of FF proteomes during follicle selection, development, and ovulation has not been comprehensively investigated. Therefore, a shotgun proteomics approach and bioinformatics analyses were used to profile the proteomes of equine FF harvested in vivo from follicles at the following development stages: predeviation (18-20 mm), deviation (22-25 mm), postdeviation (26-29 mm), preovulatory (30-35 mm), and impending ovulation.

View Article and Find Full Text PDF

Background: Selenoprotein H (SELONOH), a member of the thioredoxin-like family proteins, is prioritized to degradation in selenium (Se) insufficiency. Recent studies implicate protective roles of SELENOH in oxidative stress, cellular senescence, and intestinal tumorigenesis. Although the nonselenoprotein H0YE28 is suggested as shortened SELENOH according to genomic and proteomic data repositories, this variant has not been verified biochemically.

View Article and Find Full Text PDF

Apocrine secretion is a recently discovered widespread non-canonical and non-vesicular secretory mechanism whose regulation and purpose is only partly defined. Here, we demonstrate that apocrine secretion in the prepupal salivary glands (SGs) of Drosophila provides the sole source of immune-competent and defense-response proteins to the exuvial fluid that lies between the metamorphosing pupae and its pupal case. Genetic ablation of its delivery from the prepupal SGs to the exuvial fluid decreases the survival of pupae to microbial challenges, and the isolated apocrine secretion has strong antimicrobial effects in "agar-plate" tests.

View Article and Find Full Text PDF

Mitogen activated protein kinases (MAPKs) integrate elicitor perception with both early and late responses associated with plant defense and innate immunity. Much of the existing knowledge on the role of plant MAPKs in defense mechanisms against microbes stems from extensive research in the model plant . In the present study, we investigated the involvement of barley () MPK3 in response to flagellin peptide flg22, a well-known bacterial elicitor.

View Article and Find Full Text PDF

Cytotoxicity concerns of nanoparticles on animal or human bodies have led to the design of iron oxide core nanocomposites, coated with elemental silver to allow their magnetic removal from bio-mixtures. Although the antimicrobial effect of silver is well-described, the effects of nanoparticles derived from silver on microorganisms remain unfolded. Here, we characterized a customized magnetic silver nanocomposite (Ag-MNP) and evaluated its effects on bacterial growth and protein changes.

View Article and Find Full Text PDF

Background: Proteomic studies of follicular fluid (FF) exist for several species, including the horse; however, the seasonal influence on FF proteome has not been explored in livestock. The application of high-throughput proteomics of FF in horse has the potential to identify seasonal variations of proteins involved in follicle and oocyte growth.

Methods: This study (i) profiles the proteomes of equine FF collected from dominant growing follicles during the spring anovulatory season (SAN), and spring (SOV), summer (SUM), and fall (FOV) ovulatory seasons; and (ii) identifies season-dependent regulatory networks and associated key proteins.

View Article and Find Full Text PDF

Phospholipase D alpha 1 (PLDα1) is a phospholipid hydrolyzing enzyme playing multiple regulatory roles in stress responses of plants. Its signaling activity is mediated by phosphatidic acid (PA) production, capacity to bind, and modulate G-protein complexes or by interaction with other proteins. This work presents a quantitative proteomic analysis of two T-DNA insertion α mutants of .

View Article and Find Full Text PDF

Phospholipase Dα1 (PLDα1) belongs to phospholipases, a large phospholipid hydrolyzing protein family. PLDα1 has a substrate preference for phosphatidylcholine leading to enzymatic production of phosphatidic acid, a lipid second messenger with multiple cellular functions. PLDα1 itself is implicated in biotic and abiotic stress responses.

View Article and Find Full Text PDF

Lentil, black soybean and black turtle bean are commonly consumed legumes of different genera, containing high phenolic contents, which are effective antioxidants and angiotensin-I converting enzyme (ACE) inhibitors. However, these legumes' phenolic compositions and ACE inhibition ability have not been compared. Crude water extract (CE) was semi-purified (SPE) and fractionated using column chromatography.

View Article and Find Full Text PDF

Catfish is the largest aquaculture industry in the United States. Edwardsiellosis is considered one of the most significant problems affecting this industry. Edwardsiella piscicida is a newly described species within the genus Edwardsiella, and it was previously classified as Edwardsiella tarda.

View Article and Find Full Text PDF

Bovine herpesvirus (BoHV) type 1 is an important agricultural pathogen that infects cattle and other ruminants worldwide. Acute infection of the oro-respiratory tract leads to immune suppression and allows commensal bacteria to infect an otherwise healthy lower respiratory tract. This condition is known as the Bovine Respiratory Disease (BRD).

View Article and Find Full Text PDF

Microtubule organization and dynamics are critical for key developmental processes such as cell division, elongation, and morphogenesis. Microtubule severing is an essential regulator of microtubules and is exclusively executed by KATANIN 1 in In this study, we comparatively studied the proteome-wide effects in two mutants. Thus, shotgun proteomic analysis of roots and aerial parts of single nucleotide mutant and T-DNA insertion mutant was carried out.

View Article and Find Full Text PDF

Arabidopsis MPK4 and MPK6 are implicated in different signalling pathways responding to diverse external stimuli. This was recently correlated with transcriptomic profiles of Arabidopsis mpk4 and mpk6 mutants, and thus it should be reflected also on the level of constitutive proteomes. Therefore, we performed a shot gun comparative proteomic analysis of Arabidopsis mpk4 and mpk6 mutant roots.

View Article and Find Full Text PDF

Unlabelled: Water stress (WS) predisposes peanut plants to fungal infection resulting in pre-harvest aflatoxin contamination. Major changes during water stress including oxidative stress, lead to destruction of photosynthetic apparatus and other macromolecules within cells. Two peanut cultivars with diverse drought tolerance characteristics were subjected to WS, and their leaf proteome was compared using two-dimensional electrophoresis complemented with MALDI-TOF/TOF mass spectrometry.

View Article and Find Full Text PDF

Maize (Zea mays L.) is a host to numerous pathogenic species that impose serious diseases to its ear and foliage, negatively affecting the yield and the quality of the maize crop. A considerable amount of research has been carried out to elucidate mechanisms of maize-pathogen interactions with a major goal to identify defense-associated proteins.

View Article and Find Full Text PDF

Disentanglement of functional complexity associated with plant mitogen-activated protein kinase (MAPK) signaling has benefited from transcriptomic, proteomic, phosphoproteomic, and genetic studies. Published transcriptomic analysis of a double homozygous recessive anp2anp3 mutant of two MAPK kinase kinase (MAPKKK) genes called Arabidopsis thaliana Homologues of Nucleus- and Phragmoplast-localized Kinase 2 (ANP2) and 3 (ANP3) showed the upregulation of stress-related genes. In this study, a comparative proteomic analysis of anp2anp3 mutant against its respective Wassilevskaja ecotype (Ws) wild type background is provided.

View Article and Find Full Text PDF

We present a comprehensive approach combining proteomics and cell biology to study vesicular trafficking in plants. Within this approach, we exploit chemical compounds inhibiting particular vesicular trafficking events in plant cells. Treatment of plants with these relatively specific inhibitors results in intracellular accumulation of proteins being transported by vesicles as well as in a change in abundance of regulatory proteins.

View Article and Find Full Text PDF

The role of YODA MITOGEN ACTIVATED PROTEIN KINASE KINASE KINASE 4 (MAPKKK4) upstream of MITOGEN ACTIVATED PROTEIN KINASE 6 (MPK6) was studied during post-embryonic root development of Arabidopsis thaliana. Loss- and gain-of-function mutants of YODA (yda1 and ΔNyda1) were characterized in terms of root patterning, endogenous auxin content and global proteomes. We surveyed morphological and cellular phenotypes of yda1 and ΔNyda1 mutants suggesting possible involvement of auxin.

View Article and Find Full Text PDF