Publications by authors named "Pech-Cervantes A"

Gastrointestinal nematode (GIN) infection poses the most significant obstacle to the sustainable development of small ruminant (sheep and goat) farming globally. Resistance of GINs to synthetic anthelmintic drugs has led to rising interest in exploring alternative methods for parasite control, such as the utilization of bioactive plants with anti-parasitic properties. In this investigation, black seed (Nigella sativa), a shrub high in secondary antioxidant compounds, and sericea lespedeza (Lespedeza cuneata), a perennial legume high in tannins with anti-parasitic properties were combined to determine if two bioactive plants containing different types of secondary compounds can provide a stronger anti-parasitic effect than sericea lespedeza alone.

View Article and Find Full Text PDF

We investigated the impact of a rumen-bypass protein (RBP) supplement on growth performance, plasma and urinary N (UN) concentration, hepatic mitochondrial protein complexes, and hepatic mRNA expression of immune genes of beef steers with negative or positive residual feed intake (RFI) phenotype. Forty crossbred beef steers with an average body weight (BW) of 492 ± 36 kg were subjected to a generalized randomized block design over a 42-day experimental period. This study followed a 2 × 2 factorial arrangement of treatments.

View Article and Find Full Text PDF

This study aimed to estimate the magnitude of the effects of dietary inclusion of peanut skins (PS) byproduct (Arachis hypogea L.) on intake, total-tract digestibility, and rumen fermentation of cattle via meta-analysis. Data were collected following the PRISMA methodology.

View Article and Find Full Text PDF

We applied ruminal and plasma metabolomics and ruminal 16S rRNA gene sequencing to determine the metabolic pathways and ruminal bacterial taxa associated with divergent residual body weight gain phenotype in crossbred beef steers. A group of 108 crossbred growing beef steers (average BW = 282.87 ± 30 kg) were fed a forage-based diet for a period of 56 d in a confinement dry lot equipped with GrowSafe intake nodes to determine their residual body weight gain (RADG) phenotype.

View Article and Find Full Text PDF

We conducted a meta-analysis in this scientific study to determine the effects of feeding meat sheep dry distillers grains with solubles (DDGS). Thirty-three peer-reviewed articles that met our inclusion requirements and were published between 1997 and 2021 were examined. To calculate the variation in performance, fermentation, carcass features, and nitrogen efficiency between the DDGS and control (no DDGS) treatments, we used 940 sheep weighing an average of 29.

View Article and Find Full Text PDF

Aflatoxin B (AFB) is a mycotoxin known to impair human and animal health. It is also believed to have a deleterious effect on ruminal nutrient digestibility under in vitro batch culture systems. The objective of this study was to evaluate the effects of increasing the dose of AFB on ruminal dry matter and nutrient digestibility, fermentation profile, and N flows using a dual-flow continuous culture system fed a diet formulated for lactating dairy cows.

View Article and Find Full Text PDF

Florida Native is a heritage sheep breed in the United States and expresses superior ability to regulate gastrointestinal nematodes. The objective of the present study was to investigate the importance of copy number variants (CNVs) on resistance to natural Haemonchus contortus infections. A total of 300 Florida Native sheep were evaluated.

View Article and Find Full Text PDF

We examined the effects of dietary supplementation of a multicomponent blend of prebiotics and probiotics on health, immune status, metabolism, and performance of newly weaned beef steers during a 35-d receiving period. Eighty newly weaned crossbred steers (12-hour postweaning; 206 ± 12 kg of body weight [BW]) from a single source were stratified by BW into four pens (20 steers per pen) such that each pen had similar BW at the beginning of the experiment. The pens were randomly assigned to receive a corn silage-based diet with no additive (CON; two pens; = 40 steers) or a basal diet supplemented with SYNB feed additive at an average of 28 g/steer/d (SYNB; two pens; = 40 steers).

View Article and Find Full Text PDF

Several studies have evaluated the effects of the dietary application of exogenous alpha-amylase preparations (AMA) as a strategy to increase total tract starch digestibility (TTSD) and milk yield (MY) in dairy cows, but the results have been inconsistent. Thus, the objective of this study was to evaluate the effects of the dietary application of AMA on the performance, digestibility, and rumen fermentation of lactating dairy cows using a meta-analytic method. A total of 18 peer-reviewed manuscripts (N = 32 treatment comparisons) from 2003 to 2019 were systematically identified following the PRISMA method.

View Article and Find Full Text PDF

The objective of this study was to determine the effect of inoculation with Lactobacillus hilgardii with or without Lactobacillus buchneri on the fermentation, chemical composition, and aerobic stability of sorghum and corn silage after 2 ensiling durations. Sorghum forage was harvested at 27% dry matter (DM; experiment 1), and different corn hybrids were harvested at late (43.8% DM; experiment 2) or normal maturity (34% DM; experiment 3).

View Article and Find Full Text PDF

We previously reported that milk production in dairy cows was increased by adding a specific xylanase-rich exogenous fibrolytic enzyme (XYL) to a total mixed ration (TMR) containing 10% bermudagrass silage (BMD). Two follow-up experiments were conducted to examine whether adding XYL would increase the performance of dairy cows consuming a TMR containing a higher (20%) proportion of BMD (Experiment 1) and to evaluate the effects of XYL on in vitro fermentation and degradability of the corn silage, BMD, and TMR (Experiment 2). In Experiment 1, 40 lactating Holstein cows in early lactation (16 multiparous and 24 primiparous; 21 ± 3 d in milk; 589 ± 73 kg of body weight) were blocked by milk yield and parity and randomly assigned to the Control and XYL treatments.

View Article and Find Full Text PDF

A meta-analysis of 158 peer-reviewed articles was conducted to examine effects of inoculation with Lactobacillus buchneri (LB)-based inoculants (LBB) that did or did not include homolactic or obligate heterolactic bacteria on silage fermentation and aerobic stability. A complementary meta-analysis of 12 articles examined LBB inoculation effects on dairy cow performance. Raw mean differences between inoculant and control treatment means weighted by inverse variance were compared with a hierarchical effects model that included robust variance estimation.

View Article and Find Full Text PDF

We examined the effects of dietary supplementation of a blend of mannan and glucan on the growth performance, energy status, and whole-blood immune gene expression of newly weaned beef steers during a 42-d receiving period. Forty-eight newly weaned Angus crossbred steers (2-d post-weaning; 199 ± 13 kg of initial body weight [BW]) from a single source were stratified by BW and randomly assigned to one of the two treatments: basal diet with no additive (CON; = 24) or a basal diet top-dressed with 5 g of a blend of mannan and glucan (MANGLU; = 24). Average daily gain (ADG) and feed efficiency (FE) from days 1 to 14, 15 to 42, and 1 to 42 were calculated from daily dry matter intake (DMI) and weekly BW.

View Article and Find Full Text PDF

We examined the effects of two direct-fed microbial (DFM) products containing multiple microbial species and their fermentation products on ruminal metatranscriptome and carboxyl-metabolome of beef steers. Nine ruminally-cannulated Holstein steers were assigned to 3 treatments arranged in a 3 × 3 Latin square design with three 21-d periods. Dietary treatments were (1) Control (CON; basal diet without additive), (2) Commence (PROB; basal diet plus 19 g/d of Commence), and (3) RX3 (SYNB; basal diet plus 28 g/d of RX3).

View Article and Find Full Text PDF

This study was conducted to examine the effects of clay (CL) and Saccharomyces cerevisiae fermentation product (SCFP) on the ruminal bacterial community of Holstein dairy cows challenged with aflatoxin B (AFB). A second objective was to examine correlations between bacterial abundance and performance measures. Eight lactating dairy cows stratified by milk yield and parity were randomly assigned to 4 treatments in a 4 × 4 Latin square design with 2 replicate squares, four 33-d periods, and a 5-d washout between periods.

View Article and Find Full Text PDF

Aflatoxin is a potent carcinogen commonly found in animal feeds that can impair rumen fermentation at high concentrations; however, its effects at physiologically relevant concentrations are unknown. This study examined the effects of aflatoxin B (AFB), with or without bentonite clay (CL) and Saccharomyces cerevisiae fermentation product (SCFP)-based sequestering agents on in vitro rumen fermentation and digestibility of a dairy cow TMR. Corn silage-based TMR (0.

View Article and Find Full Text PDF

The study applied a targeted metabolomics approach that uses a direct injection and tandem mass spectrometry (DI-MS/MS) coupled with a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics of plasma to evaluate the effects of supplementing clay with or without fermentation product (SCFP) on the metabolic status of dairy cows challenged with aflatoxin B. Eight healthy, lactating, multiparous Holstein cows in early lactation (64 ± 11 DIM) were randomly assigned to one of four treatments in a balanced 4 × 4 duplicated Latin square design with four 33 d periods. Treatments were control, toxin (T; 1725 µg aflatoxin B (AFB)/head/day), T with clay (CL; 200 g/head/day), and CL with SCFP (YEA; 35 g of SCFP/head/day).

View Article and Find Full Text PDF

Bacterial expansin-like proteins have synergistically increased cellulose hydrolysis by cellulolytic enzymes during the initial stages of biofuel production, but they have not been tested on livestock feeds. The objectives of this study were to: isolate and express an expansin-like protein (BsEXLX1), to verify its disruptive activity (expansion) on cotton fibers by immunodetection (Experiment 1), and to determine the effect of dose, pH and temperature for BsEXLX1 and cellulase to synergistically hydrolyze filter paper (FP) and carboxymethyl cellulose (CMC) under laboratory (Experiment 2) and simulated ruminal (Experiment 3) conditions. In addition, we determined the ability of BsEXLX1 to synergistically increase hydrolysis of corn and bermudagrass silages by an exogenous fibrolytic enzyme (EFE) (Experiment 4) and how different doses of BsEXLX1 and EFE affect the gas production (GP), in vitro digestibility and fermentation of a diet for dairy cows (Experiment 5).

View Article and Find Full Text PDF

Four experiments were conducted to examine the effects of a recombinant bacterial expansin-like protein (BsEXLX1) from Bacillus subtilis and a commercial exogenous fibrolytic enzyme (EFE) preparation for ruminants on hydrolysis of pure substrates (cellulose and xylan) and in vitro digestibility of bermudagrass haylage (BMH). Recombinant Escherichia coli BL21 strain was used to express BsEXLX1; the protein was purified using an affinity column. In experiment 1, carboxymethylcellulose, Whatman #1 filter paper (General Electric, Boston, MA) and oat-spelt xylan substrates were subjected to 4 treatments (1) sodium citrate buffer (control), (2) BsEXLX1 (162 µg/g of substrate), (3) EFE (2.

View Article and Find Full Text PDF

Subacute ruminal acidosis (SARA) is a metabolic disease of ruminants characterized by low pH, with significant impacts on rumen microbial activity, and animal productivity and health. Microbial changes during subacute ruminal acidosis have previously been analyzed using quantitative PCR and 16S rRNA sequencing, which do not reveal the actual activity of the rumen microbial population. Here, we report the functional activity of the rumen microbiota during subacute ruminal acidosis.

View Article and Find Full Text PDF

The forage lignocellulosic complex is one of the greatest limitations to utilization of the nutrients and energy in fiber. Consequently, several technologies have been developed to increase forage fiber utilization by dairy cows. Physical or mechanical processing techniques reduce forage particle size and gut fill and thereby increase intake.

View Article and Find Full Text PDF

The study was conducted to examine the effect of supplementing bentonite clay with or without a Saccharomyces cerevisiae fermentation product (SCFP; 19 g of NutriTek + 16 g of MetaShield, both from Diamond V, Cedar Rapids, IA) on the performance and health of dairy cows challenged with aflatoxin B (AFB). Twenty-four lactating Holstein cows (64 ± 11 d in milk) were stratified by parity and milk production and randomly assigned to 1 of 4 treatment sequences. The experiment had a balanced 4 × 4 Latin square design with 6 replicate squares, four 33-d periods, and a 5-d washout interval between periods.

View Article and Find Full Text PDF

The first objective of this study was to examine effects of adding Escherichia coli O157:H7 with or without chemical or microbial additives on the bacterial diversity and composition of alfalfa silage. The second objective was to examine associations between the relative abundance of known and unknown bacterial species and indices of silage fermentation quality. Alfalfa forage was harvested at 54% dry matter, chopped to a theoretical length of cut of 19 mm, and ensiled in quadruplicate in laboratory silos for 100 d after the following treatments were applied: (1) distilled water (control); (2) 1 × 10 cfu/g of E.

View Article and Find Full Text PDF