Introduction: Inhibition of gamma-secretase presents a direct target for lowering Aβ production in the brain as a therapy for Alzheimer's disease (AD). However, gamma-secretase is known to process multiple substrates in addition to amyloid precursor protein (APP), most notably Notch, which has limited clinical development of inhibitors targeting this enzyme. It has been postulated that APP substrate selective inhibitors of gamma-secretase would be preferable to non-selective inhibitors from a safety perspective for AD therapy.
View Article and Find Full Text PDFBackground: In vivo administration of antibodies against the amyloid-beta (Abeta) peptide has been shown to reduce and reverse the progressive amyloidosis that develops in a variety of mouse models of Alzheimer's disease (AD). This work has been extended to clinical trials where subsequent autopsy cases of AD subjects immunized against Abeta showed similar reductions in parenchymal amyloid plaques, suggesting this approach to reduce neuropathology in man is feasible.
Objective: Multiple hypotheses have been advanced to explain how anti-Abeta antibodies may lower amyloid burden.
Transgenic PDAPP mice, which express a disease-linked isoform of the human amyloid precursor protein, exhibit CNS pathology that is similar to Alzheimer's disease. In an age-dependent fashion, the mice develop plaques containing beta-amyloid peptide (Abeta) and exhibit neuronal dystrophy and synaptic loss. It has been shown in previous studies that pathology can be prevented and even reversed by immunization of the mice with the Abeta peptide.
View Article and Find Full Text PDF