Publications by authors named "Pearl Huang"

Tumor innervation has recently been documented and characterized in various settings and tumor types. However, the role that nerves innervating tumors play in the pathogenesis of cancer has not been clarified. In this study, we searched for neural signaling from bulk RNA sequencing from The Cancer Genome Atlas (TCGA) dataset and looked for patterns of interactions between different cell types within the tumor environment.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists have found out that nerves help in healing and growth not just in healthy tissues but also in diseases like cancer.
  • Recent studies show that nerves can actually help cancer grow and spread by sending signals in the area around tumors.
  • Understanding how nerves work in these situations could lead to new treatments for fighting diseases or improving health.
View Article and Find Full Text PDF

A hallmark of endometriosis - a chronic debilitating condition whose causes are poorly understood - is neuronal innervation of lesions. Recent evidence demonstrates that the peripheral nervous system plays an important role in the pathophysiology of this disease. Sensory nerves, which surround and innervate endometriotic lesions, not only drive the chronic and debilitating pain associated with endometriosis but also contribute to a pro-growth phenotype by secreting neurotrophic factors and interacting with surrounding immune cells.

View Article and Find Full Text PDF

Purpose: is mutated in the majority of pancreatic ductal adenocarcinoma. MAPK and PI3K-AKT are primary KRAS effector pathways, but combined MAPK and PI3K inhibition has not been demonstrated to be clinically effective to date. We explore the resistance mechanisms uniquely employed by malignant cells.

View Article and Find Full Text PDF

Purpose: KRAS is the most commonly mutated oncogene in human tumors. KRAS-mutant cells may exhibit resistance to the allosteric MEK1/2 inhibitor selumetinib (AZD6244; ARRY-142886) and allosteric AKT inhibitors (such as MK-2206), the combination of which may overcome resistance to both monotherapies.

Experimental Design: We conducted a dose/schedule-finding study evaluating MK-2206 and selumetinib in patients with advanced treatment-refractory solid tumors.

View Article and Find Full Text PDF
Double down for a double win.

Clin Cancer Res

April 2012

The rationale for using multiple inhibitors between and within the phosphoinositide 3-kinase/AKT/mTOR and RAS/MEK/ERK pathways is scientifically compelling, and a limited number of experimental agents are currently being tested in phase I combinations. Patient subpopulations, whose tumors are defined by genetic lesions, are showing promising responses to this approach.

View Article and Find Full Text PDF

Cancer is a collection of complex diseases in which cell proliferation and apoptosis are dysregulated due to the acquisition of genetic changes in cancer cells. These genetic changes, combined with the interrelated physiologic adaptations of neo-angiogenesis, recruitment of stromal support tissues, and suppression of immune recognition, are measurable characteristics in tumor gene expression profiles and biochemical pathways. These measures can lead to identification of disease drivers and, ultimately, can be used to assign therapy.

View Article and Find Full Text PDF

Background: Colon cancer has been classically described by clinicopathologic features that permit the prediction of outcome only after surgical resection and staging.

Methods: We performed an unsupervised analysis of microarray data from 326 colon cancers to identify the first principal component (PC1) of the most variable set of genes. PC1 deciphered two primary, intrinsic molecular subtypes of colon cancer that predicted disease progression and recurrence.

View Article and Find Full Text PDF

Background: Hyperactivation of the Ras signaling pathway is a driver of many cancers, and RAS pathway activation can predict response to targeted therapies. Therefore, optimal methods for measuring Ras pathway activation are critical. The main focus of our work was to develop a gene expression signature that is predictive of RAS pathway dependence.

View Article and Find Full Text PDF

Centromere-associated protein-E (CENP-E) is a kinetochore-associated mitotic kinesin that is thought to function as the key receptor responsible for mitotic checkpoint signal transduction after interaction with spindle microtubules. We have identified GSK923295, an allosteric inhibitor of CENP-E kinesin motor ATPase activity, and mapped the inhibitor binding site to a region similar to that bound by loop-5 inhibitors of the kinesin KSP/Eg5. Unlike these KSP inhibitors, which block release of ADP and destabilize motor-microtubule interaction, GSK923295 inhibited release of inorganic phosphate and stabilized CENP-E motor domain interaction with microtubules.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDA) is among the most lethal human cancers in part because it is insensitive to many chemotherapeutic drugs. Studying a mouse model of PDA that is refractory to the clinically used drug gemcitabine, we found that the tumors in this model were poorly perfused and poorly vascularized, properties that are shared with human PDA. We tested whether the delivery and efficacy of gemcitabine in the mice could be improved by coadministration of IPI-926, a drug that depletes tumor-associated stromal tissue by inhibition of the Hedgehog cellular signaling pathway.

View Article and Find Full Text PDF

Human kinesin spindle protein (KSP)/hsEg5, a member of the kinesin-5 family, is essential for mitotic spindle assembly in dividing human cells and is required for cell cycle progression through mitosis. Inhibition of the ATPase activity of KSP leads to cell cycle arrest during mitosis and subsequent cell death. Ispinesib (SB-715992), a potent and selective inhibitor of KSP, is currently in phase II clinical trials for the treatment of multiple tumor types.

View Article and Find Full Text PDF

Akt kinases 1, 2, and 3 are important regulators of cell survival and have been shown to be constitutively active in a variety of human tumors. GSK690693 is a novel ATP-competitive, low-nanomolar pan-Akt kinase inhibitor. It is selective for the Akt isoforms versus the majority of kinases in other families; however, it does inhibit additional members of the AGC kinase family.

View Article and Find Full Text PDF

The mitotic kinesin KSP (kinesin spindle protein, or Eg5) has an essential role in centrosome separation and formation of the bipolar mitotic spindle. Its exclusive involvement in the mitotic spindle of proliferating cells presents an opportunity for developing new anticancer agents with reduced side effects relative to antimitotics that target tubulin. Ispinesib is an allosteric small-molecule KSP inhibitor in phase 2 clinical trials.

View Article and Find Full Text PDF

The advent of molecularly targeted drug discovery has facilitated the identification of a new generation of anti-mitotic therapies that target proteins with specific functions in mitosis. The exquisite selectivity for mitosis and the distinct ways in which these new agents interfere with mitosis provides the potential to not only overcome certain limitations of current tubulin-targeted anti-mitotic drugs, but to expand the scope of clinical efficacy that those drugs have established. The development of these new anti-mitotic drugs as targeted therapies faces significant challenges; nevertheless, these potential therapies also serve as unique tools to dissect the molecular mechanisms of the mitotic-checkpoint response.

View Article and Find Full Text PDF

Oncogenic BRAF alleles are both necessary and sufficient for cellular transformation, suggesting that chemical inhibition of the activated mutant protein kinase may reverse the tumor phenotype. Here, we report the characterization of SB-590885, a novel triarylimidazole that selectively inhibits Raf kinases with more potency towards B-Raf than c-Raf. Crystallographic analysis revealed that SB-590885 stabilizes the oncogenic B-Raf kinase domain in an active configuration, which is distinct from the previously reported mechanism of action of the multi-kinase inhibitor, BAY43-9006.

View Article and Find Full Text PDF

Matrix metalloproteinase (MMP)-activated prodrugs were formed by coupling MMP-cleavable peptides to doxorubicin. The resulting conjugates were excellent in vitro substrates for MMP-2, -9, and -14. HT1080, a fibrosarcoma cell line, was used as a model system to test these prodrugs because these cells, like tumor stromal fibroblasts, expressed several MMPs.

View Article and Find Full Text PDF

Kinesin motor proteins utilize the energy from ATP hydrolysis to transport cellular cargo along microtubules. Kinesins that play essential roles in the mechanics of mitosis are attractive targets for novel antimitotic cancer therapies. Monastrol, a cell-permeable inhibitor that specifically inhibits the kinesin Eg5, the Xenopus laevis homologue of human KSP, can cause mitotic arrest and monopolar spindle formation.

View Article and Find Full Text PDF

Tumour growth is dependent on multiple factors, including the physiological process of angiogenesis. Several opportunities for inhibiting angiogenesis with targeted therapies have been identified and are currently being evaluated for clinical efficacy. Some of the most promising approaches include small-molecule inhibitors for the tyrosine receptor kinase VEGFR2.

View Article and Find Full Text PDF