Tako-Tsubo syndrome (TTS) presents as transient ventricular dysfunction, yet its underlying pathophysiology remains enigmatic. The prognosis of patients presenting with TTS appears to be impaired as compared to the general population and is similar to patients with acute coronary syndromes. Recent investigations have predominantly focused on elucidating therapeutic strategies associated with improved outcomes, particularly among post-menopausal female patients.
View Article and Find Full Text PDFWe introduce a general method to engineer arbitrary Hamiltonians in the Floquet phase space of a periodically driven oscillator, based on the noncommutative Fourier transformation technique. We establish the relationship between an arbitrary target Floquet Hamiltonian in phase space and the periodic driving potential in real space. We obtain analytical expressions for the driving potentials in real space that can generate novel Hamiltonians in phase space, e.
View Article and Find Full Text PDFLight is a powerful tool for controlling mechanical motion, as shown by numerous applications in the field of cavity optomechanics. Recently, small scale optomechanical circuits, connecting a few optical and mechanical modes, have been demonstrated in an ongoing push towards multi-mode on-chip optomechanical systems. An ambitious goal driving this trend is to produce topologically protected phonon transport.
View Article and Find Full Text PDFThere is a growing effort in creating chiral transport of sound waves. However, most approaches so far have been confined to the macroscopic scale. Here, we propose an approach suitable to the nanoscale that is based on pseudomagnetic fields.
View Article and Find Full Text PDFThere is enormous interest in engineering topological photonic systems. Despite intense activity, most works on topological photonic states (and more generally bosonic states) amount in the end to replicating a well-known fermionic single-particle Hamiltonian. Here we show how the squeezing of light can lead to the formation of qualitatively new kinds of topological states.
View Article and Find Full Text PDFIt has been predicted and experimentally demonstrated that by injecting squeezed light into an optomechanical device, it is possible to enhance the precision of a position measurement. Here, we present a fundamentally different approach where the squeezing is created directly inside the cavity by a nonlinear medium. Counterintuitively, the enhancement of the signal-to-noise ratio works by deamplifying precisely the quadrature that is sensitive to the mechanical motion without losing quantum information.
View Article and Find Full Text PDFWe solve the two-particle s-wave scattering for an ultracold-atom gas confined in a quasi-one-dimensional trapping potential which is periodically modulated. The interaction between the atoms is included via Fermi's pseudopotential. For a modulated isotropic transverse harmonic confinement, the atomic center of mass and relative degrees of freedom decouple and an exact solution is possible.
View Article and Find Full Text PDFWe describe a new mechanism of tunneling between period-two vibrational states of a weakly nonlinear, parametrically modulated oscillator. The tunneling results from resonant transitions induced by the fast oscillating terms conventionally disregarded in the rotating wave approximation (RWA). The tunneling amplitude displays resonant peaks as a function of the modulation frequency; near the maxima it is exponentially larger than the RWA tunneling amplitude.
View Article and Find Full Text PDF