Publications by authors named "Peadar N Kirke"

Many folate-related genes have been investigated for possible causal roles in neural tube defects (NTDs) and oral clefts. However, no previous reports have examined the major gene responsible for folate uptake, the proton-coupled folate transporter (SLC46A1). We tested for association between these birth defects and single nucleotide polymorphisms in the SLC46A1 gene.

View Article and Find Full Text PDF

Background: Neural tube defects (NTDs), which are among the most common congenital malformations, are influenced by environmental and genetic factors. Low maternal folate is the strongest known contributing factor, making variants in genes in the folate metabolic pathway attractive candidates for NTD risk. Multiple studies have identified nominally significant allelic associations with NTDs.

View Article and Find Full Text PDF

Background: Low maternal choline intake and blood concentration may be risk factors for having a child with a neural tube defect (NTD); however, the data are inconsistent. This is an important question to resolve because choline, if taken periconceptionally, might add to the protective effect currently being achieved by folic acid.

Objective: We examined the relation between NTDs, choline status, and genetic polymorphisms reported to influence de novo choline synthesis to investigate claims that taking choline periconceptionally could reduce NTD rates.

View Article and Find Full Text PDF

Background: Folic acid supplements can protect against neural tube defects (NTDs). Low folate and low vitamin B12 status may be maternal risk factors for having an NTD affected pregnancy. However, not all NTDs are preventable by having an adequate folate/ B12 status and other potentially modifiable factors may be involved.

View Article and Find Full Text PDF

The plasma glycoprotein von Willebrand factor (VWF) exhibits fivefold antigen level variation across the normal human population determined by both genetic and environmental factors. Low levels of VWF are associated with bleeding and elevated levels with increased risk for thrombosis, myocardial infarction, and stroke. To identify additional genetic determinants of VWF antigen levels and to minimize the impact of age and illness-related environmental factors, we performed genome-wide association analysis in two young and healthy cohorts (n = 1,152 and n = 2,310) and identified signals at ABO (P < 7.

View Article and Find Full Text PDF

Background: Neural tube defects (NTDs) are common birth defects (~1 in 1000 pregnancies in the US and Europe) that have complex origins, including environmental and genetic factors. A low level of maternal folate is one well-established risk factor, with maternal periconceptional folic acid supplementation reducing the occurrence of NTD pregnancies by 50-70%. Gene variants in the folate metabolic pathway (e.

View Article and Find Full Text PDF

Background: In elderly individuals with low serum vitamin B-12, those who have high serum folate have been reported to have greater abnormalities in the following biomarkers for vitamin B-12 deficiency: low hemoglobin and elevated total homocysteine (tHcy) and methylmalonic acid (MMA). This suggests that folate exacerbates vitamin B-12-related metabolic abnormalities.

Objective: We determined whether high serum folate in individuals with low serum vitamin B-12 increases the deleterious effects of low vitamin B-12 on biomarkers of vitamin B-12 cellular function.

View Article and Find Full Text PDF

Background: Periconceptional use of folic acid prevents most neural tube defects (NTDs). Whether folic acid and/or multivitamins can prevent other congenital anomalies is not clear. This study tested whether maternal blood levels of folate and vitamin B12 in pregnancies affected by congenital malformations excluding NTDs are lower when compared to non-affected pregnancies.

View Article and Find Full Text PDF

Individual studies of the genetics of neural tube defects (NTDs) contain results on a small number of genes in each report. To identify genetic risk factors for NTDs, we evaluated potentially functional single nucleotide polymorphisms (SNPs) that are biologically plausible risk factors for NTDs but that have never been investigated for an association with NTDs, examined SNPs that previously showed no association with NTDs in published studies, and tried to confirm previously reported associations in folate-related and non-folate-related genes. We investigated 64 SNPs in 34 genes for association with spina bifida in up to 558 case families (520 cases, 507 mothers, 457 fathers) and 994 controls in Ireland.

View Article and Find Full Text PDF

Case-parent trios were used in a genome-wide association study of cleft lip with and without cleft palate. SNPs near two genes not previously associated with cleft lip with and without cleft palate (MAFB, most significant SNP rs13041247, with odds ratio (OR) per minor allele = 0.704, 95% CI 0.

View Article and Find Full Text PDF

Background: Suggestive, but not conclusive, studies implicate many genetic variants in oral cleft etiology. We used a large, ethnically homogenous study population to test whether reported associations between nonsyndromic oral clefts and 12 genes (CLPTM1, CRISPLD2, FGFR2, GABRB3, GLI2, IRF6, PTCH1, RARA, RYK, SATB2, SUMO1, TGFA) could be confirmed.

Methods: Thirty-one single nucleotide polymorphisms (SNPs) in exons, splice sites, and conserved non-coding regions were studied in 509 patients with cleft lip with or without cleft palate (CLP), 383 with cleft palate only (CP), 838 mothers and 719 fathers of patients with oral clefts, and 902 controls from Ireland.

View Article and Find Full Text PDF

Polymorphisms in folate-related genes have emerged as important risk factors in a range of diseases including neural tube defects (NTDs), cancer, and coronary artery disease (CAD). Having previously identified a polymorphism within the cytoplasmic folate enzyme, MTHFD1, as a maternal risk factor for NTDs, we considered the more recently identified mitochondrial paralogue, MTHFD1L, as a candidate gene for NTD association. We identified a common deletion/insertion polymorphism, rs3832406, c.

View Article and Find Full Text PDF

Background: A previous report described the presence of autoantibodies against folate receptors in 75% of serum samples from women with a history of pregnancy complicated by a neural-tube defect, as compared with 10% of controls. We sought to confirm this finding in an Irish population, which traditionally has had a high prevalence of neural-tube defects.

Methods: We performed two studies.

View Article and Find Full Text PDF

Objective: Folic acid fortification has reduced neural tube defect prevalence by 50% to 70%. It is unlikely that fortification levels will be increased to reduce neural tube defect prevalence further. Therefore, it is important to identify other modifiable risk factors.

View Article and Find Full Text PDF

In this paper, we trace the history of current research into the genetic and biochemical mechanisms that underlie folate-preventable neural tube defects (NTDs). The inspired suggestion by Smithells that common vitamins might prevent NTDs ignited a decade of biochemical investigations-first exploring the nutritional and metabolic factors related to NTDs, then onto the hunt for NTD genes. Although NTDs were known to have a strong genetic component, the concept of common genetic variance being linked to disease risk was relatively novel in 1995, when the first folate-related polymorphism associated with NTDs was discovered.

View Article and Find Full Text PDF

Background: Both environmental and genetic factors are involved in the etiology of NTDs. Inadequate folate intake and obesity are important environmental risk factors. Several folate-related genetic variants have been identified as risk factors; however, little is known about how genetic variants relate to the increased risk seen in obese women.

View Article and Find Full Text PDF

Genetic variants in MTHFD1 (5,10-methylenetetrahydrofolate dehydrogenase/5,10-methenyltetrahydrofolate cyclohydrolase/ 10-formyltetrahydrofolate synthetase), an important folate metabolic enzyme, are associated with a number of common diseases, including neural tube defects (NTDs). This study investigates the promoter of the human MTHFD1 gene in a bid to understand how this gene is controlled and regulated. Following a combination of in silico and molecular approaches, we report that MTHFD1 expression is controlled by a TATA-less, Initiator-less promoter and transcription is initiated at multiple start sites over a 126 bp region.

View Article and Find Full Text PDF

Background: Neural tube defects (NTDs) are a major cause of death and disability. Periconceptional folic acid prevents up to 70% of these malformations but public health campaigns to increase use of supplements have had disappointing results: The proposed mandatory fortification of bread products in Ireland has raised concerns about possible side effects. We examined data collected on a cohort of children born with NTDs in an era before fortification/supplementation to illustrate the serious consequences in terms of survival and disability.

View Article and Find Full Text PDF

Genetic and environmental factors contribute to the etiology of neural tube defects (NTDs). While periconceptional folic acid supplementation is known to significantly reduce the risk of NTDs, folate metabolic pathway related factors do not account for all NTDs. Evidence from mouse models indicates that the tumor protein p53 (TP53) is involved in implantation and normal neural tube development.

View Article and Find Full Text PDF

The importance of folate in reproduction can be appreciated by considering that the existence of the vitamin was first suspected from efforts to explain a potentially fatal megaloblastic anemia in young pregnant women in India. Today, low maternal folate status during pregnancy and lactation remains a significant cause of maternal morbidity in some communities. The folate status of the neonate tends to be protected at the expense of maternal stores; nevertheless, there is mounting evidence that inadequate maternal folate status during pregnancy may lead to low infant birthweight, thereby conferring risk of developmental and long-term adverse health outcomes.

View Article and Find Full Text PDF

Background: Cleft lip with or without cleft palate (CLP) and cleft palate only (CPO) have an inherited component and, many studies suggest, a relationship with folate. Attempts to find folate-related genes associated with clefts have, however, often been inconclusive. This study examined four SNPs related to folate metabolism (MTHFR 677 C-->T, MTHFR 1298 A-->C, MTHFD1 1958 G-->A, and TC II 776 C-->G) in a large Irish population to clarify their relationship with clefts.

View Article and Find Full Text PDF

Periconceptional maternal folic acid supplementation can prevent up to 70% of pregnancies affected with neural tube defects (NTDs), including spina bifida. This has focused attention on folate-related genes such as dihydrofolate reductase (DHFR) in a bid to identify the genetic factors that influence NTD risk through either the fetal or maternal genotype. We considered a novel intronic 19-bp deletion polymorphism and two polymorphisms within the 3' untranslated region (721A>T and 829C>T) of the DHFR gene as candidates for NTD risk.

View Article and Find Full Text PDF

Individuals homozygous for the thermolabile variant (677TT) of methylenetetrahydrofolate reductase exhibit reduced folate status as evidenced by a drop in the biomarker red cell folate (RCF) compared to those who carry at least one 677C allele. We now report that a different polymorphism in the same enzyme, namely 1298A>C, is associated with increased RCF levels. Thus, these two common polymorphisms change a metabolic phenotype in opposite directions suggesting that their cancer protective associations are by different mechanisms.

View Article and Find Full Text PDF

The risk of neural tube defects (NTDs) is known to have a significant genetic component that could act through either the NTD patient and/or maternal genotype. The success of folic acid supplementation in NTD prevention has focused attention on polymorphisms within folate-related genes. We previously identified the 1958G>A (R653Q) polymorphism of the trifunctional enzyme MTHFD1 (methylenetetrahydrofolate-dehydrogenase, methenyltetrahydrofolate-cyclohydrolase, formyltetrahydrofolate synthetase; often referred to as 'C1 synthase') as a maternal risk for NTDs, but this association remains to be verified in a separate study to rule out a chance finding.

View Article and Find Full Text PDF

The reduced folate carrier (RFCI) is essential for folate transport into cells. Low folate is an important cause of neural tube defects (NTDs), and a single-nucleotide polymorphism (H27R) (80G-->A) in the RFCI gene has been reported to be a NTD risk factor. We investigated H27R and a 61 bp tandem repeat polymorphism as potential risk factors for NTDs, using a large homogeneous Irish population by case/control comparison, log-linear analysis, and transmission disequilibrium testing.

View Article and Find Full Text PDF